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Problem definition

• Given
• Input sequences
• Item hierarchy
• Constraint π
• Minimum support threshold σ

• Candidate sequences of input sequence T:
• Subsequences of T that conform with constraint π

• Find frequent sequences
• Every sequence that is a candidate sequence of at least σ input
sequences
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Related work

Sequential algorithms DESQ-COUNT and DESQ-DFS
(Beedkar and Gemulla, 2016)

Two distributed algorithms for Hadoop MapReduce:

• MG-FSM (Miliaraki et al., 2013; Beedkar et al., 2015)
• Maximum gap and maximum length constraints
• No hierarchies

• LASH (Beedkar and Gemulla, 2015)
• Maximum gap and maximum length constraints
• Hierarchies
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Naïve approach

• “Word count”
• Generate candidate sequences→ count→ filter

• Can improve by using single item frequencies

• Problem: a sequence of length n has O(2n) subsequences
(without considering hierarchy)

• Typically less due to constraints, but still a problem

→ Need a better approach
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Overview

• Two main stages

• Partition candidate sequences

• Similar approach used in MG-FSM and LASH
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node 1

node 2

node n

...

stage 1: process input sequences stage 2: shuffle stage 3: local mining

input sequences intermediary information partitions frequent sequences
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Partitioning

• Partition candidate sequences

• Item-based partitioning

• Pivot item

• First item

T: abcd
ab, abc, abcd, abd,
b, bc, bcd, bd

Pa: ab, abc, abd, abcd

Pb: b, bc, bd, bcd

• Least frequent item

T: abcd
ab, abc, abcd, abd,
b, bc, bcd, bd

Pb: ab, b

Pc: abc, bc

Pd: abd, abcd, bd, bcd
with f(a) > f(b) > f(c) > f(d)

→ reduces variance in partition sizes
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...
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input sequences intermediary information partitions frequent sequences

One partition per pivot item.

An input sequence is relevant for zero or more partitions. Next: what to shuffle?
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Shuffle

• Goal: from an input sequence, communicate candidate
sequences to relevant partitions

• Two main options
• Send input sequence

+ compact when many candidate sequences
- need to compute candidate sequences twice

• Send candidate sequences

+ compact when candidate sequences are short and few per partition

→ Focus on sending candidate sequences
→ Try to represent them compactly
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A compact representation for candidate sequences

• Goal: compactly represent set of candidate sequences
• Trick: exploit shared structure

{caabe, caaBe, caAbe, caABe, cAabe, cAaBe, cAAbe, cAABe, cbe, cBe}

• Naïve NFA

0start
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a a b e

c
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c A a b e
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• Compressed NFA
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Shuffling NFAs

Constructing NFAs

• Per input sequence, build one NFA for each relevant partition
• Naïve: generate all candidate sequences, compress
• Better: build directly from Finite State Transducer

Serialization

• Send structure and items
• Many “simple” NFAs

0start 1 2 3
{a} {b} {c}
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Overview

node 1

node 2

node n

...

stage 1: process input sequences stage 2: shuffle stage 3: local mining

input sequences intermediary information partitions frequent sequences

Done: How to partition? What to shuffle?

Next: How to process the partitions?
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Local mining

• Partition for pivot item p
• Given: list of NFAs
• Goal: mine frequent sequences with pivot item p

• Pattern-growth approach (Pei et al., 2001)

20
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Experimental setup

• Implementation
• In Java and Scala
• For Apache Spark

• Experiments on cluster with 8 worker nodes
• 8 cores per node
• 64 GB memory per node

• Here: two datasets
• 50 million sentences from New York Times
• Product reviews of 21 million Amazon users
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Non-traditional constraints

• Constraints that cannot be expressed with traditional methods
• Compare to count-based approach

A1A2 A3 A4N1 N2 N3 N4 N5
100

101

102

103

to
ta
lr
un

tim
e
(s
ec
on
ds
) Count

DDIN

→ DDIN not slower for selective constraints N1, N2, N3, and A2
→ DDIN up to 50× faster for unselective constraints N4, N5, A1, A3, and A4
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Traditional constraints

• Compare to LASH, state-of-the art distributed algorithm
• Maximum gap and maximum length constraints, hierarchies
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More findings

• Scales linearly
• Tested effect of dataset size, weak and strong scalability

• Main limitation
• Many candidate sequences with no common structure
• Better approach: send input sequence
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Conclusion

• Distributed algorithm for frequent sequence mining with
declarative subsequence constraints

• Item-based partitioning, shuffles candidate sequences as NFA

• Can mine a wide range of constraints

• Outperforms naïve approach, competitive to LASH, scales
linearly

Thank you!
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