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1. INTRODUCTION
Aircraft surveillance technology is currently undergoing

a major transition. It is moving from exclusively relying
on conventional air-traffic management systems such as Pri-
mary and Secondary Surveillance Radar towards also incor-
porating a new generation of air-traffic management tools.
Drivers for this change are, among others, increased air traf-
fic, increased precision achieved by the new systems and po-
tential improvements for aircraft routing.

One key component of the next generation tools is Au-
tomatic Dependent Surveillance - Broadcast (ADS-B). Its
core idea is that planes determine their own location using
the on-board GPS equipment and transmit that informa-
tion regularly. Most countries demand that airplanes are
equipped with ADS-B before a certain point in the near fu-
ture. In European airspace, planes have to be equipped with
ADS-B by 2017 [6].

Most commercial airplanes in Europe are already equipped
with ADS-B hardware and emit signals during flight. Avail-
able to us is a subset of these signals picked up by receivers
of the OpenSky network, collected in September 2015.

In this project, our focus lies on holding and go-arounds.
It seems odd that in a time of very advanced technology for
position detection and sophisticated routing algorithms even
in consumer-grade hardware, aircraft routing is still not able
to manage planes in a way that eliminates holding. Every
minute spent in holding leads to a considerable amount of
wasted fuel, adding to the already bad carbon footprint of
air traffic in general. Instead of holding, a plane could (po-
tentially) have taken off later or flown with reduced speed
for appropriate time. We want to find out at which airports
holding is frequent and which airlines frequently fly holding.
As an end result, we will present a ranking of airports and
airlines.

We aim to do the same for go-arounds, although from an
environmental perspective, they are not as bad as holding,
as they are mainly done for safety purposes and therefore
much harder to prevent.

2. RELATED WORK

2.1 ADS-B data
Our data set is comprised of ADS-B messages. Aircraft

equipped with this technology determine their position and
their movement using onboard satellite navigation systems
and then use ADS-B transmitters to broadcast this informa-
tion twice every second [6]. Less frequently, the hardware
transmits identification, status, and urgency information.

The ADS-B protocol does not encrypt message content,
which allows actors external to the professional aerospace in-
dustry to gather data for their own purposes, for instance for
scientific research. OpenSky (https://opensky-network.
org) is a participatory sensor network with the goal to col-
lect ADS-B messages in its sensing range for further analysis
[6]. OpenSky provide their data free of charge to researchers
wanting to analyze it.

During the period we have data for there were fifteen ac-
tive sensors in the network; apart from some sensors appar-
ently having been deactivated since the paper by Strohmeier
et al., the coverage we see in our data seems to correspond
well to the network coverage they describe.

There are, however, limitations to this data that we have
to take into account. The most obvious one being that there
is no data outside sensor range, as can clearly be seen in
fig. 1. Other limitations and how they affect our results will
be discussed in section 6.

ADS-B transmits different message types. Most frequent
are airborne position and airborne velocities messages. Air-
borne position messages transmit latitude, longitude, and
altitude of the plane. Airborne velocities messages transmit
velocity, vertical rate, and heading. In aircraft identification
messages, the hardware broadcasts the current call sign the
plane is flying under1.

2.1.1 Using ADS-B data for event detection
In their 2015 paper [6], Strohmeier et al. present Open-

Sky Network in general, a discussion of security features (or
rather, the lack thereof), detection of forged messages, as
well as detection of ”unusual events happening in the cov-
erage area of the sensor network” [6, p. 12].

The section about event detection is of special interest to
us, as they perform a similar kind of analysis to the one we
are doing. By identifying distinct business aircraft, military

1More information on message types and decoding them can
be found at http://adsb-decode-guide.readthedocs.
org/en/latest/introduction.html#ads-b-message-
types.
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Figure 1: Map of Europe with position messages
(blue) and sensor locations (red) superimposed.

aircraft, and helicopters they apply time series analysis to,
fairly reliably, detect large events by distinguishing them as
outliers in the data set.

There is also a section about how timing idiosyncrasies can
facilitate distinguishing different brands of ADS-B transmit-
ters as well as telling fake messages from real ones through
anomaly detection [6]. This shows that the data can be used
in a multitude of ways in several fields.

2.2 Analysis approaches

2.2.1 Data mining approaches
Han et al. describe methods to mine moving-object data

[2]. They compare and explain different data mining ap-
proaches, both supervised and unsupervised, for application
to data of moving objects. Their approaches are not ide-
ally suited for our purposes, as we are looking to identify
very specific events without labeled instances; we have no
instances from which supervised methods could learn.

An imaginable approach to our problem using these meth-
ods would be to identify a number of holding patterns and
go-arounds manually and then let the mining algorithms
learn from these instances to find other instances in a boot-
strapping fashion. Still, for our goals, the problem of ini-
tially identifying instances remains.

2.2.2 GPS traces
Liu et al. use GPS locations reported by taxis in Shanghai

to infer Shanghai’s road network [3]. For this, they describe
different algorithms, using either the individual reported lo-
cations or connected consecutive data points. In their paper,
they focus on working with slightly unreliable granular data,
as the taxis report their locations as infrequently as once a
minute and the taxis do not carry high-quality GPS equip-
ment. On the other hand side, this data is available in large
amounts.

Methods like this would be interesting for this project to
identify the pathway structure in holding stacks. Using this
information, it would be possible to map planes’ trajectories

to these holding pathways. If a plane is flying on one of the
identified holding pathways, one is able to declare the plane
to be in holding. But, as before, this would require some
way of identifying certain pathways as holding pathways.

Instead of looking at the three-dimensional pathways, one
could identify two-dimensional holding areas or, more fine-
grained, the racetrack-like holding pathway. This data could
then be used to identify planes flying holding patterns. Ar-
eas could presumably be identified to be holding areas more
easily than holding pathways.

3. RESEARCH QUESTIONS

3.1 Questions
In this project, we want to answer the following main

questions:

• How frequently do airplanes fly holding when landing
and how much time is spent in holding per flight on
average? How does this compare between airports and
between airlines?

• How frequently do airplanes reattempt landings as a
result of go-arounds and how much time is spent doing
that? How does this compare between airports and
airlines?

We are looking to answer these questions using our data
set of ADS-B messages from Europe during September 2015.
As an end result we want to quantify airport quality using
these metrics. We present our findings in a concise manner
in the form of a lightweight web page where the user can sort
the presented data flexibly in order to compare the quality
and business of airports and airlines alike.

In order to answer these questions, we need to answer
some additional questions. ADS-B data does not explicitly
include the destination airport of a flight. It also does not
contain information about where a flight starts and where
it ends. So additionally, we are looking to answer:

• How to identify flights from ADS-B data?

• How to identify the destination airport of a flight from
ADS-B data?

3.2 Technology
In order to find answers to these questions in the data

available to us, we need to pick appropriate tools. We iden-
tified two distinct sides to this problem: Firstly, we are chal-
lenged with developing algorithms which reliably identify
the events we are looking for. The technology we choose
to use for this should enable us to iterate quickly, switching
back and forth between creating or altering an algorithm and
evaluating it; Secondly, we need to be able to apply those
algorithms to a large data set, meaning the algorithms need
to be scalable and run performantly.

As the requirements for both fields are rather distinct,
we chose to use two different sets of tools. We use Spark
with Scala and Java for large-scale data processing, includ-
ing data extraction, data decoding, and large-scale deploy-
ment of our developed algorithms. We chose Spark because
it is fast, convenient, and intuitive to use, as well as being
both flexible and scalable [5].

On the other side, we decided to develop algorithms lo-
cally on subsets of the data. To that end we use tools from
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the Python data analysis stack, namely Jupyter Notebooks2,
Pandas3 and Matplotlib4. This set of tools allows us to de-
velop new algorithms and test them on subsets of data im-
mediately, leading to very quick iteration. Matplotlib makes
it convenient for us to visualize the data. In particular, we
use a specialized library called Basemap to plot positional
data on top of a map of Europe at various configurable res-
olutions5.

In addition, we use the java-adsb library provided by
OpenSky6 to decode the raw message part of the ADS-
B data transmissions. This library contains methods for
decoding the different ADS-B messages, in addition to er-
ror handling related to corrupt or otherwise faulty message
data.

4. PROJECT SETUP

4.1 Extracting data
First of all, we set up a process to read the data and

decode relevant information. The data available to us con-
sists of the raw transmitted ADS-B messages, stored in avro
format7. As mentioned in section 2.1, there are different
message types, of which position and velocity are the most
relevant for our purposes. These two message types make
up the vast majority of our data: in the first day of our data
set, September 2nd 2015, these two message types make up
around 85% of all received messages. Identification messages
make up another 5%.

Each data point contains a rawMessage, encoded data,
as well as general information about the receiving antenna.
The raw message contains a message type, information spe-
cific to that message type, and the ICAO 24-bit address: a
unique identifier for one ADS-B transmitter. As these trans-
mitters are not usually transferred between aircraft, we can
reliably use these addresses to uniquely identify airplanes.
In order to extract data from the raw message string, we
use the java-adsb8 library provided by OpenSky. In order
to use java-adsb in Spark, we needed to make some slight
modifications to the code to be able to serialize the parts of
the library we are using at the worker nodes.

To cut down on the size of transmitted data, no positional
message contains the entire information about the current
aircraft location. Messages contain either odd or even posi-
tion frames, two of which are needed to pinpoint the exact
location given in a message.

To extract the data, we do the following:

1. Extract the ICAO from the raw message, using java-
adsb,

2. key and group the data by ICAO,

3. flatmap over the grouped data, passing an unordered
list of messages, and

2http://jupyter.org/
3http://pandas.pydata.org/
4http://matplotlib.org/
5http://matplotlib.org/basemap/
6https://opensky-network.org/network/projects/20-
java-adsb
7https://avro.apache.org/
8https://github.com/openskynetwork/java-adsb

4. pass the messages of one ICAO in chronological order
to extract the data we are looking for.

This way of extraction is rather scalable, as the extraction
can be done in parallel for each airplane. A limitation is
the number of data points that arrive at one worker in the
flatmap step, as too many data points could cause memory
problems at the worker. When extracting data over a long
time frame, the number of these data points might increase
drastically. To make our extraction process applicable for
larger time periods, we group the data by both day and
ICAO. For this, we cut between two days in the night. In
our experiments, we did not miss a significant number of
landings as in Central Europe, there are usually no, or very
few, landings during the night.

We are aware that groupByKey is expensive, as a lot of
data needs to be shared, but seeing as we need to pass the
data in chronological order for each ICAO and do not have
an associative or commutative operation, we are forced to
use it.

Using this extraction process, we can extract data of in-
terest in a flexible way. We used this scheme for different
types of extractions. For example, we extracted data points
of specific planes, data points from certain locations and
data of planes which flew certain patterns.

4.2 Understanding data
We imported these extracted subsets into our local data

analysis environments, the Jupyter notebooks. There, we
were able to work with the data interactively. Some effort
was required to get a first understanding of the data we were
working with; our first efforts showed data that we were not
expecting. This was mostly caused by the limitations to the
data available to us. First, the antennas of the OpenSky
network do not, for the most part, pick up signals when
planes are close to the ground. Second, we have no data
points when planes fly over areas where there is no antenna
coverage. And third, there usually is a delay before antennas
start picking up the signals from starting planes. These lim-
itations make our tasks of discovering landings, destination
airports, holding patterns and go-arounds more involved.

Figure 2 shows these limitations using the example of one
plane. The figure shows the altitude reported by the plane
with ICAO address 3c5ee8 on September 2nd. In the morn-
ing and early afternoon, the plane is flying in areas with good
antenna coverage. Data is only missing when the plane is
close to the ground and when the antennas need some min-
utes to pick up the plane’s signals. In the late afternoon
and the evening, the plane is flying in areas with worse data
coverage. During this time, data is missing for longer in-
tervals. It also looks like data for some landings is missing
completely.

4.3 Algorithm development

4.3.1 Landings
Initially we were hoping to be able to infer from the data,

or look up externally, flight routes with information on origin
and destination airport, and scheduled departure and arrival
times. In our investigation of the data we discovered that
this was exceedingly difficult to deduce given the unforeseen
sparsity we had to deal with.

As our task is centered around identifying certain events
or patterns that typically take place right before landing,
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Figure 2: Altitude profile for ICAO 3c5ee8 on Septem-
ber 2nd 2015

landings are what we focused on at the beginning. It is pos-
sible to infer discrete flights by identifying landings (and the
corresponding destination airport), without necessarily hav-
ing to identify take-off (these are implied by the previously
identified landing).

To identify a landing from a sequence of transmitted po-
sitional and velocity data points without knowing the des-
tination airport, most of our ideas centered around looking
for descents. We were also thinking about looking at the
distance to the ground at the current position of the plane.
There are different numbers reported by the aircraft that
are potentially interesting for this. Besides reported alti-
tude, one might find vertical rate helpful.

The main difficulty in doing this is that the sensors stop
receiving messages when the airplane gets close to the ground.
Nearby terrain might in some cases severely affect reception.

To detect landings even in situations with sparse data,
we mainly look for significant descents, meaning descents
of more than 1500 feet. We had a professional airline pilot
confirm our hypothesis that a plane will land soon if it de-
scends 1500 feet. In addition to the descent, we look for a
pause in the data after the descent. For identifying descent,
we use reported altitude rather than the vertical rate of a
plane, as it is more robust towards missing data points. If
we miss some data points of reported altitude, we can still
reliably calculate the difference. Vertical rate gives an idea
of the current rate of descent, but if there is missing data,
it is risky to make statements about the time between the
data points.

Figure 3 shows the identified landings for one plane through-
out the first day of data. The graph clearly shows periods
of no data being received, along with what looks like a land-
ing our algorithm missed at around 13:40. For this specific
flight we have almost no data from the descent, and the lit-
tle descent we do see is not drastic enough for our algorithm
to flag it as a landing.

4.3.2 Destination airport
The next part is to identify the destination airport of a

flight, as the destination is not explicitly contained in the
data. For this, we discussed a couple of approaches.

One of our first ideas was to use the call sign – which is
transmitted in the ADS-B identification messages – and a
database connecting call sign and routes to identify the des-

Figure 3: Altitude profile (blue) and identified land-
ings (red) of plane ICAO 406bbb on September 2nd,
2015

tination airport. Unfortunately, our research showed that
there is no such database publicly available. In order to
achieve similar goals, FlightAware and similar services ap-
parently manually curate databases. An option would have
been to write a script to scrape the database of Flightradar24,
for example. This approach has three limitations though.
First, we have around 29,000 unique call signs with landings
in our data. Second, the data we can scrape is current data
and not historical data for September 2015. And third, ap-
parently, there seem to be airlines that do not use the same
call sign for a route every time.

So we opted to detect the destination airport from the
available data. This task sounds easier than it is because,
as mentioned, the data for planes flying near the ground is
missing, so the last part of the landing approach is missing.
The point where the antenna stops to pick up the signals
depends on antenna location, the distance of the antenna to
the destination airport and the obstacles between plane and
antenna.

Our first approach was to take the last reported position
before a landing and look for the closest airport. By closest,
we mean closest in terms of euclidean distance on a 2D-map,
considering only latitude and longitude. Additionally using
altitude might give a slight improvement for some cases, we
will touch on that later. To do this, we use external data,
a list of airports with their locations from OpenFlights9.
Unfortunately, the list contains also small, non-commercial
airports. So looking for the closest airport of the last data
point frequently results in those. To prevent this, we filtered
the airports list. First, we tried to get rid of all airports
that have no three-letter codes. But it turned out, that still
some non-commercial airports in our coverage area remain.
So we used a list of commercial airports by region to restrain
the list to European commercial passenger airports. In our
filtered list, we have 369 remaining airports, which can be
seen in fig. 4.

With the filtered list, the mapping works very well if the
distance between commercial airports is large enough. Usu-
ally this is the case and we are confident that our mapping is
correct, but for certain areas this method is inaccurate. Lon-
don has five commercial airports; Heathrow has four hold-

9http://openflights.org/data.html
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Figure 4: Commercial passenger-airports in Europe,
zoomed to the part relevant for our data

ing stacks, designated for each cardinal direction. If a plane
approaches Heathrow from the east, it will hold in its des-
ignated stack. If we lose data right as the airplane exits
holding, it is practically impossible to tell from only po-
sitional data whether the airplane was headed for London
Heathrow or London City Airport.

We did have some ideas to improve this. One of them was
to look at airplane trajectories and extrapolate the land-
ing approach should it be needed – essentially, following the
path of the plane and checking when it hits the ground.
However, the amount of data points to use as basis for ex-
trapolation is a difficult problem, especially as there might
be missing or erroneous data points. Both considering too
few and too many data points could lead the algorithm to
arrive at the wrong conclusion. The fact that data is lost
at different stages for every airport only compounds this
problem.

Another idea was to consider the last data point before the
landing and the first one after the landing, and look for the
closest airport to the middle point between them. A slight
caveat to this is that there is the delay until antennas pick
up the signal from planes that are taking off. Otherwise, we
think this might be a good approach.

All in all, we decided to go with the simple approach here,
as we have no way of evaluating the identified destination
airports on a larger data set, so we have no way of telling
which approach works better than another. We can look
up the destination of individual call signs manually (though
finding accurate information about old routes might be dif-
ficult without the right contacts).

4.3.3 Holding
Our initial ideas towards detecting holding patterns in-

volved identifying pathways containing holding patterns and
match flight paths to those [3] and finding fixed areas desig-
nated for holding patterns and match circling aircraft pat-
terns to those areas. The latter was inspired by reading
about London Heathrow, which has four main designated
holding areas, or stacks, for approaching aircraft; one for

Figure 5: Altitude over time for ICAO 4b17a3 on
September 2nd 2015. Go-around in red for landing
in afen Zürich at 08:24.

each cardinal direction.
First, we researched airplane holding and put together

a collection of facts that we figured could be helpful for
identifying or confirming holding patterns:

1. Holding patterns consist of racetrack-like circles.

2. Consecutive circles are separated by about 1000 feet
vertically.

3. Completing one round takes about four to six minutes.

4. Holding patterns have designated entry points and pro-
cedures.

5. There are strict regulations for aircraft speed in hold-
ing patterns.

We evaluated various ideas such as looking for aircraft flying
at certain holding speeds for periods of time, aircraft passing
the same location twice with roughly 1000 feet difference, or
trying to look for aircraft hitting the entry point locations,
but in our early experiments, an approach based mostly on
facts 1 and 3 delivered the most reliably results. Our algo-
rithm relies on the fact that planes turn a full 360◦in one
direction every 4-6 minutes when they are flying holding.
We had hypothesized that this would not be enough to re-
liably match most of the holding patterns, but it turns out
this is actually the case. Therefore, we decided to stick with
this approach rather than pathway identification.

4.3.4 Go-arounds
Go-arounds eluded us for quite some time. Compared to

holdings they are exceedingly rare; we struggled for a while
to find any go-around instances at all in our local data set
(limited to September 2nd 2015).

Our first good idea that we implemented and tested was
to look at which flights spent the most time flying under
6000 feet after reaching cruising altitude. This gave us an
enormous list that included occurrences of what looked like
training flights, helicopters, and stunt flights. After inspect-
ing plots of the four hundred aircraft that spent the most
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Figure 6: Positions for ICAO 4b17a3 on September
2nd 2015. Showing only positions for landing at
08:24. Positions in go-around shown in red.

time under 6000 feet we finally found our first example of
a real go-around, see figs. 5 and 6 for altitude and position
plots. Essentially they look like small bumps in altitude
right before landing.

Based on the knowledge of what go-arounds look like in
our data we devised a method for reliably identifying a go-
around:

1. Attempt to rule out flights that have too little data
to properly identify a valid go-around. This is done
by checking that the final data point for a flight is
within 1000 feet of the destination airport. If the final
point is too far off we cannot reliably tell if the altitude
bump we are looking for is attributable to an actual
go-around or just an ascent followed by a descent.

2. Go-arounds we have spotted in the data have not as-
cended more than about 2000 feet after first having
attempted to land. We limit the search to ascents of
1000 to 2000 feet to find a bump that is deliberate, yet
small enough still to be a go-around.

3. Make sure the start of the bump is at approximately
the same level as the final landing, that is making
sure the bump is symmetrical with regards to altitude
changes.

4. Identify the start of the bump.

This method makes some pretty drastic assumptions that
possibly might lead to missing some go-arounds, but with
the amount of missing data we are working with this is a
reality we have to accept. Experiments were made where
we slacked up on the restrictions, resulting in a significant
amount of false positives.

Table 1 shows all of the go-arounds we successfully iden-
tified. In 0.4% (80 of approx. 20.000) of our flights we
detect a go-around. This is around what we expected to see

Airport Go-arounds
Zürich 31

Frankfurt Main 23
Madrid Barajas 10

London Luton 5
Milano Malpensa 4

Bern Belp 2
Ljubljana 1

London Heathrow 1
Ajaccio Campo Dell Oro 1

Birmingham 1

Table 1: Identified go-arounds in September 2015

with these limitations, comparing it to what is being seen
in practice [1].

The data in table 1 matches anecdotal numbers for go-
arounds to a degree, but more importantly it shows how
dependent upon pristine data we are for this detection to
work. We have mentioned how we tend to lose data when
the airplane is close to the ground, especially so with spotty
sensor reception. This is disastrous for go-around detection
as it relies heavily on low-altitude data by nature.

Consequently, we can only detect go-arounds at airports
with good data coverage, for example Frankfurt Main or
Zürich. We can not detect go-arounds for airports with bad
coverage, such as Paris Charles De Gaulle or Munich, as
we do not see any data points of the actual go-arounds.
Additionally, the total number of go-arounds is very low (see
table 1). For these two reasons, we decided not to compare
go-around numbers between airports or airlines.

4.4 Large-scale implementation
After initially developing each of these algorithms indi-

vidually and locally in Python, we then continually merged
them into one combined Java program, which we can use
in Spark. To do this, we were deciding between Java and
Scala. We did not consider Python as not all Spark func-
tionality is available in Python. We decided to use Scala for
high-level code such as adding columns, keying and group-
ing data, as it is very convenient and expressive to do these
kind of operations in Scala and because there is Spark’s in-
teractive Scala shell. For the data processing method itself,
we opted for Java, as we both are much more familiar with
Java and especially its data structures.

We consolidated all our individual algorithms into one sin-
gle pass over the data in Java. To run this, we are using the
scheme described in section 4.1. In the data processing step,
we apply the consolidated algorithm. We did run different
versions of this consolidated algorithm on the entire data
set successfully. To ensure that the algorithm runs correctly
also on larger data sets, we first tested it on smaller subsets.
After running it on the entire data set, we continually con-
ducted a couple of experiments on the data to check how
well the extractions work, section 5 will elaborate on these.

The run time of applying this algorithm to the entire data
set slightly differed from version to version. Usually, the job
took around 14 hours to complete.

4.5 Data analysis
The consolidated algorithm extracts landings with addi-

tional information about the landing. That means, it gives
us a list of all landings in the data. For each landing, it notes
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the ICAO and the current call sign of the landing plane
as well as the time and destination airport of the landing.
Additionally, for each landing, it gives information about
potential holding done before this landing. Specifically, it
notes how long the plane flew holding and when and where it
started its holding. Additionally, it stores in which direction
the plane flew its holding (clockwise or counter-clockwise).
Extracting this information from the raw data of all days
results in a 15MB CSV file.

That size is well manageable in local data analysis envi-
ronments. So we load this data into Python to aggregate
the results and prepare the data for display on the website.
We group the landings by destination airport and calculate
for each airport:

• the number of seen landings,

• the percentage of landings preceded by holding, and

• average time spent in holding per landing.

To get insights into differences between airlines, we ex-
tract the airline of the flight from the call sign. To do this,
we use data about call signs of airlines 10. The mapping to
airlines works rather well, only around 3.5% of the landings
end up without a mapped airline. Using the extracted air-
line information, we group by airline and calculate the same
figures as for the airports.

The resulting data can be explored on the website we cre-
ated for this project. We did not put online data for airports
for which we see less than 300 landings or airlines for which
we see less than 300 landings, because we think that data
gives an unrepresentative impression of the airport or the
airline, respectively. The cutoff at 300 is chosen freely by
our own best judgment. We provide the full data sets in
the data directory handed in with this report. We did not
export any data on go-arounds for the reasons laid out in
section 4.3.4.

5. EXPERIMENTS
To verify the results of the holding pattern extraction, we

conducted a couple of experiments on the extracted data.
We want to make sure that we accurately identify the events
we are looking for and that we capture them exhaustively.

First off, we wanted to know whether the number of land-
ings, which we identified, roughly matches to what we would
expect. To do that, we used external data about the yearly
aircraft movements at major airports, reported by the Air-
ports Council International [4]. An aircraft movement is
either a take-off or a landing. We have data for the five
largest airports in our data set. For these airports, we com-
pare the number of extracted landings at this airport to the
reported number of movements at this airport. To compare
the numbers of one day of identified landings to the yearly
movements, we adjust the movement figures. For each air-
port AP , table 2 shows the quotient of

quotientAP =
identified landingsAP · 2 · 365

airport movementsAP
.

Note that we are adjusting by 2 to account for the fact that
movements can be either a take-off or a landing and by 365
to compare yearly and daily numbers.

10https://en.wikipedia.org/wiki/List_of_airline_
codes

Airport Quotient
Frankfurt Main 1.03

Paris Charles De Gaulle 0.38
London Heathrow 0.42

Munich 0.17
Amsterdam Schiphol 0.98

Table 2: Identified landings in relation to adjusted
airport movements

Slight differences as for example in the Frankfurt Main
numbers are expected, as the reported movements are from
the year 2013 and our data is from 2015, but the larger differ-
ences for other airports were a bit unexpected at first. Upon
inspecting the distance of each airport to the closest antenna
the numbers made sense. For both Amsterdam Schiphol and
Frankfurt Main, there are antennas very close by, so we have
excellent data coverage there. Both Paris Charles De Gaulle
and Munich lie right at the edge of the antenna coverage,
so antennas do not pick up all incoming flights. Even with
antennas close by, we do not see data from planes below
a certain altitude. The further the antenna, the worse this
gets. For London Heathrow, it looks like we are indeed miss-
ing a lot of flights. We estimate that we are falsely declaring
the destination airport to be London City for some of the
Heathrow flights. The sensor location for England might be
another reason for this: there is only one sensor, located in
a field outside Oxford. After inspecting a topographic map
of the vicinity we noticed there seems to be a hilly forested
ridge separating Heathrow airport from the only sensor in
England. This would explain why we lose data from almost
every plane coming into the final landing approach for that
airport, even though the antenna is relatively close.

The number differences could definitely be seen as an in-
dication that there is room for improvement in our landing
detection algorithm, but one has to consider that some air-
ports are located slightly outside of the coverage range of
the network’s antennas. It is very far from the closest an-
tenna, which means that we lose data for incoming flights
very early. That is, for flights that come from a direction
where we have data coverage: if an airplane arrives from out-
side of sensor range we will completely miss it. In the case
of Munich Airportfig. 7 we can realistically can not identify
airplanes approaching from the east. One can see that there
is some positions reported close to Munich, but on investi-
gation, these turn out to be planes at cruising altitude. We
only identify landings in Munich when the planes approach
from an area of antenna coverage and drop by more than
1500 feet before we lose data. So, considering the available
data, we think our algorithm works reasonably well.

To identify false positives in holding detection, we took a
random sample of the identified holding patterns. For every
second day, we randomly chose 4 planes that flew holding
that day. We then extract the location data for these planes
on the given days from the original data and inspect the
time frame where our algorithm identified a holding pat-
tern. This manual inspection is based mainly on latitude-
longitude- and plane direction plots. After a couple of itera-
tions on our algorithm using different samples every time, in
our judgment, the algorithm does almost no false positives
by now.

To identify false negatives, we use the same decoded data
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Figure 7: Positions (blue) reported close to Munich
Airport (yellow, center), together with nearby an-
tennas (red) and Frankfurt Main Airport (yellow,
upper left)

and look at all the landings, for which no holding was identi-
fied. Here, we follow the same manual approach as for false
positives. We do feel more confident about our algorithm
by now, but there are still some cases where it is missing
instances. For example, it would not detect the go-around
on the left of fig. 6, which happened before the go-around.
That is because the plane did turn less than 320◦in the pat-
tern. We are accounting for non-360◦turns by setting the
minimum turn down to 320◦. Setting it lower would im-
prove this and would probably not introduce false positives,
as long as we do not set it too low. This might be an area
for future improvement.

6. CONCLUSIONS
Our efforts have been effective. For areas where we have

good sensor coverage our landing detection algorithm cor-
rectly identifies virtually every landing. Our holding de-
tection algorithm reliably identifies holding patterns when
there are data points from the holding pattern. For areas
with excellent data coverage, our go-around detection reli-
ably identifies go-arounds. Unfortunately, this is only true
for a small number of airports as an antenna needs to be
very close to the airport.

We created the rankings of airports and airlines by holding
percentage and average time spent in holding. To present
these results, we created a website, which allows users to sort
and filter the data. We also provide the unfiltered original
data as CSV. We decided not to compare airports or airlines
by go-arounds as we have so few identified instances and can
make reliable statements only about a very limited number
of airports.

Unfortunately, there are many areas in Europe, which are
poorly covered by the OpenSky network. As is showcased
in fig. 2 and, on a grander scale, fig. 1 there is a lot of
missing data. According to Strohmeier et al., only about

40% of European air traffic is gathered [6, p. 1]. This means
that we do not have any basis to provide results for airports
outside the sensor range shown in fig. 1. Additionally, we
cannot provide reliable data for airports located in areas
where sensor coverage is spotty, because they are at the
border of the covered area. As described in section 5, this is
definitely the case for Munich and Paris. For airports close
to the coverage zone border, we lose data very early. So we
might identify a landing, because we see a plane dropping for
1500 feet. But then we might lose data before the plane even
starts holding. And it is very unlikely that we ever see a go-
around for any of these airports without excellent coverage,
as we do not see any data point from the plane between the
actual go-around and the repeated landing attempt.

So we assume that besides landings, holdings and go-
arounds in total, we also underestimate the percentage of
holding done and the average time spent in holding for these
airports. We further underestimate those numbers for all
airports due to the holdings we miss because they happened
after the point in time where we lose data for a plane.

If one adds up the duration of all holding we have identi-
fied in the 29 days of data we have, you end at 65,749 min-
utes spent in holding. A plane’s fuel consumption strongly
depends on the type and size of the airplane, its cruising
speed, its vertical rate and its load. But if we assume a very
rough but reasonable estimate of per-minute consumption
of 55 kilograms, that amounts to around 3,600 tons of fuel
wasted in holding, around 125 tons every day. And these
numbers can only act as conservative lower bounds, as we
do not have data for all European airports and we very likely
underestimate holding for all the airports in our data set.

We hope that the adoption of ADS-B in air-traffic control
will enable new opportunities in aircraft scheduling, which
might in turn reduce the amount of fuel and time wasted in
holding.

7. FUTURE WORK
Further work for this project would naturally improve

our existing algorithms. In particular, the landing detec-
tion could benefit from some carefully applied extrapolation
to figure out the exact landing position and altitude. A
solution for this could perhaps use velocity messages with
their heading and vertical rate to make up for missing po-
sition messages: extrapolating a Bézier curve leading to the
ground, or defining an area and window of time in which a
plane is likely to land are both approaches that could work
well for the problem. Altitude data for the surface terrain
could be taken into account as well. Should we not be able
to acquire a freely available database for correlating desti-
nations with call signs or ICAOs, we could also use this to
help identify exact destinations.

Holding detection could be improved by using more of the
facts we identified and combining these different indicators
in a sensible way. Also, one could imagine using Machine
Learning approaches to identify holding, as for example the
Data Mining approaches described in section 2.2.1, using
the the identified holding patterns as a sample of learning
instances.

There are possible optimizations to the large-scale imple-
mentations of our algorithms, which would improve the per-
formance of our program when applied to larger sets of data.
This might include pre-organizing the data into partitions
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of data that belongs either to one period of time or to a spe-
cific ICAO. If these partitions are kept at the same node, this
would drastically reduce the need for reshuffling data when
running our extraction. Smarter handling of the Scala/Java
interaction might also improve performance. When apply-
ing the extraction to a larger geographic area, the distance
checking to airports might get more expensive as there are
more airports involved. This could be improved by utilizing
quad trees or similar optimized data structures for distance
checking. If more advanced detection techniques are to be
implemented, these kinds of seemingly minor optimizations
are surely needed so as to not unnecessarily bloat the run
time of the analysis.

Ideas that might build on top of this project could be using
our data to more accurately calculate pollution generated
as a result of the extra time spent holding or reattempting
landings. Further analysis could investigate ways for planes
to prevent holding by slowing down, flying different routes,
taking off later or other measures.
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