
Distributed frequent sequence mining with
declarative subsequence constraints

Alexander Renz-Wieland
April 26, 2017



• Sequence: succession of items
• Words in text
• Products bought by a customer
• Nucleotides in DNA molecules

• Goal: find frequent sequences

• Item hierarchy

• Subsequences

• Subsequence constraints

• Declarative constraints:
(Beedkar and Gemulla, 2016)

• Scalable algorithms

1



• Sequence: succession of items
• Words in text
• Products bought by a customer
• Nucleotides in DNA molecules

• Goal: find frequent sequences

• Item hierarchy

• Subsequences

• Subsequence constraints

• Declarative constraints:
(Beedkar and Gemulla, 2016)

• Scalable algorithms

1: Obama lives in Washington
2: Gates lives in Medina
3: The IMF is based in Washington

1



• Sequence: succession of items
• Words in text
• Products bought by a customer
• Nucleotides in DNA molecules

• Goal: find frequent sequences

• Item hierarchy

• Subsequences

• Subsequence constraints

• Declarative constraints:
(Beedkar and Gemulla, 2016)

• Scalable algorithms

1: Obama lives in Washington
2: Gates lives in Medina
3: The IMF is based in Washington

→ lives in (2), in Washington (2),
lives (2), in (2), Washington (2)

1



• Sequence: succession of items
• Words in text
• Products bought by a customer
• Nucleotides in DNA molecules

• Goal: find frequent sequences

• Item hierarchy

• Subsequences

• Subsequence constraints

• Declarative constraints:
(Beedkar and Gemulla, 2016)

• Scalable algorithms

1: Obama lives in Washington
2: Gates lives in Medina
3: The IMF is based in Washington

ENTITY

PERSON

Obama Gates

LOCATION

Medina Washington

VERB

live

lives

PREP

in

→ lives in (2), in Washington (2),
lives (2), in (2), Washington (2),
PERSON lives in LOCATION (2), ...

1



• Sequence: succession of items
• Words in text
• Products bought by a customer
• Nucleotides in DNA molecules

• Goal: find frequent sequences

• Item hierarchy

• Subsequences

• Subsequence constraints

• Declarative constraints:
(Beedkar and Gemulla, 2016)

• Scalable algorithms

1: Obama lives in Washington
2: Gates lives in Medina
3: The IMF is based in Washington

Subsequences of input sequence 1:

Obama, Obama lives, Obama in, Obama
Washington, Obama lives in, Obama lives
Washington, Obama in Washington, Obama
lives in Washington, lives, lives in, lives
Washington, lives in Washington, in, in
Washington, Washington

(15 subsequences, with hierarchy: 190)

1



• Sequence: succession of items
• Words in text
• Products bought by a customer
• Nucleotides in DNA molecules

• Goal: find frequent sequences

• Item hierarchy

• Subsequences

• Subsequence constraints

• Declarative constraints:
(Beedkar and Gemulla, 2016)

• Scalable algorithms

1: Obama lives in Washington
2: Gates lives in Medina
3: The IMF is based in Washington

ENTITY

PERSON

Obama Gates

LOCATION

Medina Washington

VERB

live

lives

PREP

in

item constraint, gap constraint, length
constraint, ...

1



• Sequence: succession of items
• Words in text
• Products bought by a customer
• Nucleotides in DNA molecules

• Goal: find frequent sequences

• Item hierarchy

• Subsequences

• Subsequence constraints

• Declarative constraints:
(Beedkar and Gemulla, 2016)

• Scalable algorithms

1: Obama lives in Washington
2: Gates lives in Medina
3: The IMF is based in Washington

ENTITY

PERSON

Obama Gates

LOCATION

Medina Washington

VERB

live

lives

PREP

in

item constraint, gap constraint, length
constraint, ...

“relational phrases between entities”
→ lives in (2)

1



• Sequence: succession of items
• Words in text
• Products bought by a customer
• Nucleotides in DNA molecules

• Goal: find frequent sequences

• Item hierarchy

• Subsequences

• Subsequence constraints

• Declarative constraints:
(Beedkar and Gemulla, 2016)

• Scalable algorithms

1: Obama lives in Washington
2: Gates lives in Medina
3: The IMF is based in Washington

ENTITY

PERSON

Obama Gates

LOCATION

Medina Washington

VERB

live

lives

PREP

in

item constraint, gap constraint, length
constraint, ...

“relational phrases between entities”
→ lives in (2)

1



Outline

Preliminaries

Naïve approach

Proposed algorithm

Partitioning

Shuffle

Local mining

Experimental evaluation

2



Outline

Preliminaries

Naïve approach

Proposed algorithm

Partitioning

Shuffle

Local mining

Experimental evaluation

3



Problem definition

• Given
• Input sequences
• Item hierarchy
• Constraint π
• Minimum support threshold σ

• Candidate sequences of input sequence T:
• Subsequences of T that conform with constraint π

• Find frequent sequences
• Every sequence that is a candidate sequence of at least σ input
sequences

4



Related work

Sequential algorithms DESQ-COUNT and DESQ-DFS
(Beedkar and Gemulla, 2016)

Two distributed algorithms for Hadoop MapReduce:

• MG-FSM (Miliaraki et al., 2013; Beedkar et al., 2015)
• Maximum gap and maximum length constraints
• No hierarchies

• LASH (Beedkar and Gemulla, 2015)
• Maximum gap and maximum length constraints
• Hierarchies

5



Outline

Preliminaries

Naïve approach

Proposed algorithm

Partitioning

Shuffle

Local mining

Experimental evaluation

6



Naïve approach

• “Word count”
• Generate candidate sequences→ count→ filter

• Can improve by using single item frequencies

• Problem: a sequence of length n has O(2n) subsequences
(without considering hierarchy)

• Typically less due to constraints, but still a problem

→ Need a better approach

7



Naïve approach

• “Word count”
• Generate candidate sequences→ count→ filter

• Can improve by using single item frequencies

• Problem: a sequence of length n has O(2n) subsequences
(without considering hierarchy)

• Typically less due to constraints, but still a problem

→ Need a better approach

7



Outline

Preliminaries

Naïve approach

Proposed algorithm

Partitioning

Shuffle

Local mining

Experimental evaluation

8



Overview

• Two main stages

• Partition candidate sequences

• Similar approach used in MG-FSM and LASH

9



Overview

node 1

node 2

node n

...

stage 1: process input sequences stage 2: shuffle stage 3: local mining

input sequences intermediary information partitions frequent sequences

10



Outline

Preliminaries

Naïve approach

Proposed algorithm

Partitioning

Shuffle

Local mining

Experimental evaluation

11



Partitioning

• Partition candidate sequences

• Item-based partitioning

• Pivot item

• First item

T: abcd
ab, abc, abcd, abd,
b, bc, bcd, bd

Pa: ab, abc, abd, abcd

Pb: b, bc, bd, bcd

• Least frequent item

T: abcd
ab, abc, abcd, abd,
b, bc, bcd, bd

Pb: ab, b

Pc: abc, bc

Pd: abd, abcd, bd, bcd
with f(a) > f(b) > f(c) > f(d)

→ reduces variance in partition sizes

12



Partitioning

• Partition candidate sequences

• Item-based partitioning

• Pivot item
• First item

T: abcd
ab, abc, abcd, abd,
b, bc, bcd, bd

Pa: ab, abc, abd, abcd

Pb: b, bc, bd, bcd

• Least frequent item

T: abcd
ab, abc, abcd, abd,
b, bc, bcd, bd

Pb: ab, b

Pc: abc, bc

Pd: abd, abcd, bd, bcd
with f(a) > f(b) > f(c) > f(d)

→ reduces variance in partition sizes

12



Partitioning

• Partition candidate sequences

• Item-based partitioning

• Pivot item
• First item

T: abcd
ab, abc, abcd, abd,
b, bc, bcd, bd

Pa: ab, abc, abd, abcd

Pb: b, bc, bd, bcd

• Least frequent item

T: abcd
ab, abc, abcd, abd,
b, bc, bcd, bd

Pb: ab, b

Pc: abc, bc

Pd: abd, abcd, bd, bcd
with f(a) > f(b) > f(c) > f(d)

→ reduces variance in partition sizes

12



Partitioning

• Partition candidate sequences

• Item-based partitioning

• Pivot item
• First item

T: abcd
ab, abc, abcd, abd,
b, bc, bcd, bd

Pa: ab, abc, abd, abcd

Pb: b, bc, bd, bcd

• Least frequent item

T: abcd
ab, abc, abcd, abd,
b, bc, bcd, bd

Pb: ab, b

Pc: abc, bc

Pd: abd, abcd, bd, bcd
with f(a) > f(b) > f(c) > f(d)

→ reduces variance in partition sizes

12



Partitioning

• Partition candidate sequences

• Item-based partitioning

• Pivot item
• First item

T: abcd
ab, abc, abcd, abd,
b, bc, bcd, bd

Pa: ab, abc, abd, abcd

Pb: b, bc, bd, bcd

• Least frequent item

T: abcd
ab, abc, abcd, abd,
b, bc, bcd, bd

Pb: ab, b

Pc: abc, bc

Pd: abd, abcd, bd, bcd
with f(a) > f(b) > f(c) > f(d)

→ reduces variance in partition sizes

12



Overview

node 1

node 2

node n

...

stage 1: process input sequences stage 2: shuffle stage 3: local mining

input sequences intermediary information partitions frequent sequences

One partition per pivot item.

An input sequence is relevant for zero or more partitions. Next: what to shuffle?

13



Overview

node 1

node 2

node n

...

stage 1: process input sequences stage 2: shuffle stage 3: local mining

input sequences intermediary information partitions frequent sequences

One partition per pivot item.
An input sequence is relevant for zero or more partitions.

Next: what to shuffle?

13



Overview

node 1

node 2

node n

...

stage 1: process input sequences stage 2: shuffle stage 3: local mining

input sequences intermediary information partitions frequent sequences

One partition per pivot item.
An input sequence is relevant for zero or more partitions. Next: what to shuffle? 13



Outline

Preliminaries

Naïve approach

Proposed algorithm

Partitioning

Shuffle

Local mining

Experimental evaluation

14



Shuffle

• Goal: from an input sequence, communicate candidate
sequences to relevant partitions

• Two main options
• Send input sequence

+ compact when many candidate sequences
- need to compute candidate sequences twice

• Send candidate sequences

+ compact when candidate sequences are short and few per partition

→ Focus on sending candidate sequences
→ Try to represent them compactly

15



Shuffle

• Goal: from an input sequence, communicate candidate
sequences to relevant partitions

• Two main options
• Send input sequence

+ compact when many candidate sequences
- need to compute candidate sequences twice

• Send candidate sequences

+ compact when candidate sequences are short and few per partition

→ Focus on sending candidate sequences
→ Try to represent them compactly

15



Shuffle

• Goal: from an input sequence, communicate candidate
sequences to relevant partitions

• Two main options
• Send input sequence

+ compact when many candidate sequences
- need to compute candidate sequences twice

• Send candidate sequences
+ compact when candidate sequences are short and few per partition

→ Focus on sending candidate sequences
→ Try to represent them compactly

15



Shuffle

• Goal: from an input sequence, communicate candidate
sequences to relevant partitions

• Two main options
• Send input sequence

+ compact when many candidate sequences
- need to compute candidate sequences twice

• Send candidate sequences
+ compact when candidate sequences are short and few per partition

→ Focus on sending candidate sequences
→ Try to represent them compactly

15



A compact representation for candidate sequences

• Goal: compactly represent set of candidate sequences
• Trick: exploit shared structure

{caabe, caaBe, caAbe, caABe, cAabe, cAaBe, cAAbe, cAABe, cbe, cBe}

• Naïve NFA

0start

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

41 42 43

44 45 46

c

a a b e

c
a a B e

c
a A b e

c a A B e

c A a b e

c A a B e
c A A b e
c

A A B e
c

b ec

B e

• Compressed NFA

0start 1

2 3

4 5
{c}

{a,A} {a,A} {b,B}

{e}

{b,B}

16



A compact representation for candidate sequences

• Goal: compactly represent set of candidate sequences
• Trick: exploit shared structure

{caabe, caaBe, caAbe, caABe, cAabe, cAaBe, cAAbe, cAABe, cbe, cBe}

• Naïve NFA

0start

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

41 42 43

44 45 46

c

a a b e

c
a a B e

c
a A b e

c a A B e

c A a b e

c A a B e
c A A b e
c

A A B e
c

b ec

B e

• Compressed NFA

0start 1

2 3

4 5
{c}

{a,A} {a,A} {b,B}

{e}

{b,B}

16



A compact representation for candidate sequences

• Goal: compactly represent set of candidate sequences
• Trick: exploit shared structure

{caabe, caaBe, caAbe, caABe, cAabe, cAaBe, cAAbe, cAABe, cbe, cBe}

• Naïve NFA

0start

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

41 42 43

44 45 46

c

a a b e

c
a a B e

c
a A b e

c a A B e

c A a b e

c A a B e
c A A b e
c

A A B e
c

b ec

B e

• Compressed NFA

0start 1

2 3

4 5
{c}

{a,A} {a,A} {b,B}

{e}

{b,B}

16



A compact representation for candidate sequences

• Goal: compactly represent set of candidate sequences
• Trick: exploit shared structure

{caabe, caaBe, caAbe, caABe, cAabe, cAaBe, cAAbe, cAABe, cbe, cBe}

• Naïve NFA

0start

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

41 42 43

44 45 46

c

a a b e

c
a a B e

c
a A b e

c a A B e

c A a b e

c A a B e
c A A b e
c

A A B e
c

b ec

B e

• Compressed NFA

0start 1

2 3

4 5
{c}

{a,A} {a,A} {b,B}

{e}

{b,B} 16



Shuffling NFAs

Constructing NFAs

• Per input sequence, build one NFA for each relevant partition
• Naïve: generate all candidate sequences, compress
• Better: build directly from Finite State Transducer

Serialization

• Send structure and items
• Many “simple” NFAs

0start 1 2 3
{a} {b} {c}

17



Shuffling NFAs

Constructing NFAs

• Per input sequence, build one NFA for each relevant partition
• Naïve: generate all candidate sequences, compress
• Better: build directly from Finite State Transducer

Serialization

• Send structure and items

• Many “simple” NFAs

0start 1 2 3
{a} {b} {c}

17



Shuffling NFAs

Constructing NFAs

• Per input sequence, build one NFA for each relevant partition
• Naïve: generate all candidate sequences, compress
• Better: build directly from Finite State Transducer

Serialization

• Send structure and items
• Many “simple” NFAs

0start 1 2 3
{a} {b} {c}

17



Outline

Preliminaries

Naïve approach

Proposed algorithm

Partitioning

Shuffle

Local mining

Experimental evaluation

18



Overview

node 1

node 2

node n

...

stage 1: process input sequences stage 2: shuffle stage 3: local mining

input sequences intermediary information partitions frequent sequences

Done: How to partition? What to shuffle?

Next: How to process the partitions?

19



Overview

node 1

node 2

node n

...

stage 1: process input sequences stage 2: shuffle stage 3: local mining

input sequences intermediary information partitions frequent sequences

Done: How to partition? What to shuffle?
Next: How to process the partitions? 19



Local mining

• Partition for pivot item p
• Given: list of NFAs
• Goal: mine frequent sequences with pivot item p

• Pattern-growth approach (Pei et al., 2001)

20



Outline

Preliminaries

Naïve approach

Proposed algorithm

Partitioning

Shuffle

Local mining

Experimental evaluation

21



Experimental setup

• Implementation
• In Java and Scala
• For Apache Spark

• Experiments on cluster with 8 worker nodes
• 8 cores per node
• 64 GB memory per node

• Here: two datasets
• 50 million sentences from New York Times
• Product reviews of 21 million Amazon users

22



Non-traditional constraints

• Constraints that cannot be expressed with traditional methods
• Compare to count-based approach

A1A2 A3 A4N1 N2 N3 N4 N5
100

101

102

103

to
ta
lr
un

tim
e
(s
ec
on
ds
) Count

DDIN

→ DDIN not slower for selective constraints N1, N2, N3, and A2
→ DDIN up to 50× faster for unselective constraints N4, N5, A1, A3, and A4

23



Non-traditional constraints

• Constraints that cannot be expressed with traditional methods
• Compare to count-based approach

A1A2 A3 A4N1 N2 N3 N4 N5
100

101

102

103

to
ta
lr
un

tim
e
(s
ec
on
ds
) Count

DDIN

→ DDIN not slower for selective constraints N1, N2, N3, and A2
→ DDIN up to 50× faster for unselective constraints N4, N5, A1, A3, and A4

23



Non-traditional constraints

• Constraints that cannot be expressed with traditional methods
• Compare to count-based approach

A1A2 A3 A4N1 N2 N3 N4 N5
100

101

102

103

to
ta
lr
un

tim
e
(s
ec
on
ds
) Count

DDIN

→ DDIN not slower for selective constraints N1, N2, N3, and A2
→ DDIN up to 50× faster for unselective constraints N4, N5, A1, A3, and A4

23



Traditional constraints

• Compare to LASH, state-of-the art distributed algorithm
• Maximum gap and maximum length constraints, hierarchies

L(1
0,1
,5)

L(1
00
,0,
5)

L(1
00
,1,3
)

L(1
00
,1,4
)

L(1
00
,1,5
)

L(1
00
,1,6
)

L(1
00
,1,7
)

L(1
00
,2,5
)

L(1
00
,3,5
)

L(1
0k
,1,5
)

L(1
k,1
,5)

0

10

20

n/
ato
ta
lr
un

tim
e
(m
in
ut
es
) LASH (Hadoop)

DDIN (Spark)

→ DDIN generally competitive to LASH, despite being more general
→ The fewer candidate sequences, the better DDIN

24



Traditional constraints

• Compare to LASH, state-of-the art distributed algorithm
• Maximum gap and maximum length constraints, hierarchies

L(1
0,1
,5)

L(1
00
,0,
5)

L(1
00
,1,3
)

L(1
00
,1,4
)

L(1
00
,1,5
)

L(1
00
,1,6
)

L(1
00
,1,7
)

L(1
00
,2,5
)

L(1
00
,3,5
)

L(1
0k
,1,5
)

L(1
k,1
,5)

0

10

20

n/
ato
ta
lr
un

tim
e
(m
in
ut
es
) LASH (Hadoop)

DDIN (Spark)

→ DDIN generally competitive to LASH, despite being more general
→ The fewer candidate sequences, the better DDIN

24



Traditional constraints

• Compare to LASH, state-of-the art distributed algorithm
• Maximum gap and maximum length constraints, hierarchies

L(1
0,1
,5)

L(1
00
,0,
5)

L(1
00
,1,3
)

L(1
00
,1,4
)

L(1
00
,1,5
)

L(1
00
,1,6
)

L(1
00
,1,7
)

L(1
00
,2,5
)

L(1
00
,3,5
)

L(1
0k
,1,5
)

L(1
k,1
,5)

0

10

20

n/
ato
ta
lr
un

tim
e
(m
in
ut
es
) LASH (Hadoop)

DDIN (Spark)

→ DDIN generally competitive to LASH, despite being more general
→ The fewer candidate sequences, the better DDIN 24



More findings

• Scales linearly
• Tested effect of dataset size, weak and strong scalability

• Main limitation
• Many candidate sequences with no common structure
• Better approach: send input sequence

25



Conclusion

• Distributed algorithm for frequent sequence mining with
declarative subsequence constraints

• Item-based partitioning, shuffles candidate sequences as NFA

• Can mine a wide range of constraints

• Outperforms naïve approach, competitive to LASH, scales
linearly

Thank you!

26



Conclusion

• Distributed algorithm for frequent sequence mining with
declarative subsequence constraints

• Item-based partitioning, shuffles candidate sequences as NFA

• Can mine a wide range of constraints

• Outperforms naïve approach, competitive to LASH, scales
linearly

Thank you!

26



References

Kaustubh Beedkar and Rainer Gemulla. Lash: Large-scale sequence mining with
hierarchies. SIGMOD ’15, pages 491–503. ACM, 2015.

Kaustubh Beedkar and Rainer Gemulla. Desq: Frequent sequence mining with
subsequence constraints. ICDM ’16, pages 793–798. IEEE, 2016.

Kaustubh Beedkar, Klaus Berberich, Rainer Gemulla, and Iris Miliaraki. Closing the
gap: Sequence mining at scale. ACM Transactions on Database Systems, 40(2):
8:1–8:44, 2015.

Iris Miliaraki, Klaus Berberich, Rainer Gemulla, and Spyros Zoupanos. Mind the gap:
Large-scale frequent sequence mining. SIGMOD ’13, pages 797–808. ACM, 2013.

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar
Dayal, and Mei-Chun Hsu. Prefixspan: mining sequential patterns efficiently by
prefix-projected pattern growth. ICDE ’01, pages 215–224. IEEE, 2001.

27


	Preliminaries
	Naïve approach
	Proposed algorithm
	Partitioning
	Shuffle
	Local mining

	Experimental evaluation

