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Abstract

Frequent sequence mining extracts frequently occurring patterns from sequential data.
Some algorithms allow users to specify constraints to control which sequences are of inter-
est. Each algorithm usually supports a particular subset of available constraints. Recently,
based on regular expressions, a declarative approach to specifying many of these constraints
in a unified way was proposed.

Scalable algorithms are essential to mine large datasets efficiently. Such algorithms
exist for particular subsets of constraints. However, no scalable algorithm with support for
many constraints has been put forward yet.

We propose the distributed two-stage algorithm DDIN based on item-based partition-
ing. It processes input sequences in parallel and constructs partitions that can mine for
frequent sequences in parallel. We use nondeterministic finite automata as an efficient
representation for the intermediary sequences we send to the partitions.

Our experimental evaluation on four real-world datasets suggests that DDIN outper-
forms naive approaches for declarative constraints, is competitive to a state-of-the-art
algorithm for traditional constraints, offers linear scalability, and makes it possible to mine
datasets that cannot be mined efficiently using sequential algorithms.

x



Chapter 1

Introduction

Sequences are present in many datasets. For example, a sequence can be a succession of
words in sentences, nucleotides in DNA molecules, products purchased by customers in an
online shop, or subpages visited by the user of a website. For example, the customer of an
online store might purchase an EOS 5D digital camera followed by a LP-E6 battery pack
and a 600EX-RT flash. We refer to the elements of a sequence as items.

Often, it is of interest to find frequently occurring patterns in these sequences. Linguists
might be interested in frequently used word combinations or grammatical structures. Biol-
ogists might want to find common nucleotide sequences related to certain genetic features.
Retailers might ask which products customers frequently buy in succession. User interface
designers can use common click patterns on a specific website to improve the navigation
of the site.

This problem of finding frequently occurring sequences is commonly referred to as
frequent sequence mining (FSM). Given a collection of input sequences, the goal of FSM
is to find subsequences that occur in more input sequences than a given threshold. Such a
subsequence is then considered a frequent sequence.

Often, one is interested in general patterns. For example, only a couple of customers
might purchase the EOS 5D digital camera and the 600EX-RT flash in succession. How-
ever, the purchase of a camera followed by the purchase of a flash might be quite common.
An item hierarchy allows to find such patterns. In a hierarchy, an item can generalize to
a more general notion. Typically, these relations are of the is-a type. On product data,
such an item hierarchy can be a product categorization. Such that EOS 5D is a camera,
which in turn is an electronic device.

In textual data, one can build hierarchies by using grammatical information or external
knowledge about known entities. For example, the word works stems from work, which is
a verb. The entity Albert Einstein is a scientist, which is a person. For many applications,
it is useful to have multiple generalizations for a single item. Albert Einstein is a scientist,
but also a father.

Typically, FSM produces many frequent sequences as output. Often, many of these
found sequences are not of interest for the specific application. Therefore, soon after
the initial proposal of unconstrained FSM (Agrawal and Srikant, 1995), researchers have
developed ways to constrain the output of FSM. Srikant and Agrawal (1996) propose
maximum length and maximum gap constraints, such that only subsequences with a length
up to a specified threshold are considered and only a specified number of items of the
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input sequence can be skipped to produce subsequences. Srikant et al. (1997) propose item
constraints in combination with hierarchies such that subsequences are only considered if
they contain a specified item or an item that generalizes to a specified item.

Regular expressions have been studied as a tool to flexibly specify a number of con-
straints (Garofalakis et al., 1999; Pei et al., 2002; Albert-Lorincz and Boulicaut, 2003;
Trasarti et al., 2008). They are suitable to express constraints because they offer both
a simple syntax and sufficient expressive power to specify a wide range of constraints
(Garofalakis et al., 1999).

Incorporating constraints has two main advantages (Garofalakis et al., 1999). First,
they limit the number of found sequences. Eliminating uninteresting sequences from the
result makes the output easier to interpret for users. Second, if the mining algorithm
takes the constraints into account early on in the mining process, it can avoid computation
for sequences that are not relevant to the user. Garofalakis et al. (1999) show that this
can significantly lower the amount of necessary computation for selective constraints. Pei
et al. (2002) show that some constraints can be integrated into the mining process easier
than others.

Beedkar and Gemulla (2016a) propose a pattern expression language that extends pre-
vious regular-expression based approaches and unifies many previously studied constraints
into one framework. In contrast to previous regular expression constraints, which are ap-
plied directly to subsequences and have no support for hierarchies, pattern expressions are
evaluated on the input sequence, and they support hierarchies.

Beedkar and Gemulla show that many traditional constraints can be modeled using this
pattern expression language. Beyond that, the language enables new ways to constrain
FSM. As the pattern expression language makes it possible to specify a wide range of
subsequence constraints using a high-level logic language, we refer to these constraints as
declarative subsequence constraints.

Distributed and scalable algorithms, which can run the mining on multiple computers
in parallel, are crucial for mining frequent sequences from large datasets. Some of today’s
datasets might not fit on the hard drive of a single machine. For other FSM problems, the
computational power of one machine might not be sufficient to find frequent sequences in
a reasonable time.

Parallel algorithms have been proposed early on for FSM without subsequence con-
straints or support for hierarchies (Zaki, 2001; Guralnik and Karypis, 2004). More recently,
distributed algorithms with support for maximum length and maximum gap constraints
have been proposed, first without support for hierarchies (Miliaraki et al., 2013) and later
with support for hierarchies (Beedkar and Gemulla, 2015). To the best of our knowledge, no
distributed algorithms have yet been proposed for FSM with regular expression constraints
or declarative constraints.

A straightforward distributed algorithm for declarative constraints can be developed
from the sequential DESQ-COUNT algorithm (Beedkar and Gemulla, 2016a). Its major
shortcoming is a computational blow-up for subsequence constraints that produce many
intermediary subsequences, which we call candidate sequences. We discuss this algorithm
and its deficiencies in Section 3.1. The goal of this thesis is to develop an algorithm that
overcomes these limitations.
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Problem statement. Develop a distributed algorithm for FSM with declarative sub-
sequence constraints. The algorithm should perform efficiently for constraints that produce
many candidate sequences.

We propose a two-stage distributed algorithm. The algorithm first processes input
sequences in parallel and extracts relevant information. Then, the computers of the dis-
tributed system exchange data to create a number of independent partitions. In the sec-
ond stage, these partitions are processed in parallel again to produce the set of frequent
sequences. To construct the partitions, we use a hierarchy-aware variant of item-based
partitioning. To the partitions, we send the candidate sequences generated by an input
sequence, which we encode as a nondeterministic finite automaton (NFA). For local mining
at the partitions, we adapt implement a pattern-growth approach based on DESQ-DFS
(Beedkar and Gemulla, 2016a).

We proceed as follows. First, Chapter 2 gives a formal definition of the FSM problem
with declarative subsequence constraints, introduces a computational model for these con-
straints, and discusses sequential mining algorithms for the problem. It further reviews
distributed approaches to FSM with traditional constraints. In Chapter 3, we consider
the parts of the proposed algorithm in more detail. After covering a first naive approach
to distribution in Section 3.1 and giving a high-level overview of the proposed algorithm
in Section 3.2, we consider how to divide up the problem into multiple smaller ones in
Section 3.3 and what information to send between the computers of the distributed sys-
tem in Section 3.4. We further discuss how to compactly represent candidate sequences
for communication, how to generate such a representation efficiently, and how to serialize
the representation in Section 3.5, Section 3.6, and Section 3.7, respectively. We present
our algorithm for local mining in Section 3.8. Finally, in our experimental evaluation in
Section 4, we examine the performance of the proposed algorithm.
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Chapter 2

Preliminaries

In this section, we first define the FSM problem in the context of declarative subsequence
constraints and introduce a model to express and compute these constraints. We then look
at sequential mining algorithms for this problem and review existing distributed algorithms
for similar problems.

2.1 FSM with declarative subsequence constraints

Sequential pattern mining is a problem in data mining that is concerned with finding ‘in-
teresting’ subsequences from a database of input sequences. In sequential pattern mining,
different notions exist for what a sequence is and when a sequence is ‘interesting’. In liter-
ature, many approaches study the general case of sequences of itemsets, where a sequence
is formed by a succession of itemsets. In this thesis, we focus on the special case where
sequences are formed of individual items instead of itemsets. This notion is relevant for
many applications, for example when working with textual data, DNA molecules, event
logs, or user sessions. Further, to measure the ‘interestingness’ of sequences, we focus on
how frequent the sequence is in the input data. We refer to this variant of sequential
pattern mining as FSM. In the following, after introducing necessary basic notation, we
formally define this problem.

Frequent sequence mining is closely related to frequent itemset mining, which is also
called association rule mining and was first introduced by Agrawal et al. (1993). Instead
of working with sequences as input, frequent itemset mining works on sets of items and
extracts combinations of patterns that frequently co-occur in the input itemsets.

2.1.1 Basic concepts of FSM

Sequence database. We call a collection of input sequences the sequence database. Each
input sequence is an ordered succession of items. These items stem from one item vocabulary
Σ. We denote a sequence T of length |T | as T = 〈t1t2...t|T |〉, where each item stems from
the vocabulary: ti ∈ Σ. For the sequence database D we denote D = {T1, T2, ..., T|D|}.
Figure 2.1(a) depicts an example sequence databaseDex, which contains six input sequences
and 11 distinct items.

Our example consists of generic items such as a1, c, and B. These placeholder items can
stand for items of any type. One typical application of sequence mining is text processing,
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T1 : 〈a1cb12e〉
T2 : 〈b2a2b12e〉
T3 : 〈a2da1a2b11e〉
T4 : 〈a1dBe〉
T5 : 〈ea1b2e〉
T6 : 〈a1ca1a1b2ea1cb2eda1〉

(a) Sequence database Dex

A

a1 a2

B

b1 b2

b11 b12

c

d

e

(b) Item hierarchy Hex

Item Frequency

(1) A 6
(2) B 6
(3) e 6
(4) a1 5
(5) b1 3
(6) b2 3
(7) d 3
(8) a2 2
(9) b12 2
(10) c 2
(11) b11 1

(c) f-list for Dex with Hex

Figure 2.1: Example dataset: sequence database, item hierarchy, and f-list

where one item corresponds to a word and a sequence corresponds to either a sentence
or a document. The sequence database is then a collection of sentences or a collection
of documents.

Another application is customer purchase analysis. Here, items correspond to products
and a sequence is a succession of items bought by one customer. The sequence database
consists of successions of products purchased by different customers.

Item hierarchy. An item hierarchy H defines how items of Σ can be generalized.
An item can generalize to zero or more other items from Σ. Figure 2.1(b) presents an
example hierarchy Hex for our example sequence database Dex. In the example, item a1

generalizes to item A, as does item a2. Items b11 and b12 generalize to item b1, which in
turn generalizes to item B. Item b2 also generalizes to item B. All other items in the
vocabulary do not generalize to another item.

We write ⇒ if an item directly generalizes to an item, such as b11 ⇒ b1 and b1 ⇒ B.
We further write⇒∗ if an item generalizes either directly or indirectly — with other items
as intermediary generalization steps — to another item. For example, b11 ⇒∗ B and
b11 ⇒∗ b1. For easier notation, we specify that an item indirectly generalizes to itself, that
is, b11 ⇒∗ b11.

Ancestors and descendants. We introduce two further notations for generalization.
Informally, the ancestors of item ω are all items that can be reached from ω by following
generalizations. Formally:

anc(ω) = {ω′ | ω ⇒∗ ω′}.

Note that the set of ancestors includes the item itself, that is, ω ∈ anc(ω). Referring to
the item hierarchy depicted in Figure 2.1(b), some examples are anc(b12) = {b12, b1, B},
anc(b1) = {b1, B}, and anc(e) = {e}.

Analogously, we define the set of descendants. Informally, an item ω′ is a descendant
of ω if one can generalize to ω when starting at ω′:

desc(ω) = {ω′ | ω′ ⇒∗ ω}.

Again, the set includes the item itself. For example, desc(A) = {a1, a2, A}, desc(b1) =

{b1, b11, b12}, and desc(e) = {e}.
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Subsequences. Let S = 〈s1s2...s|S|〉 and T = 〈t1t2...t|T |〉 be two sequences, consisting
of items from Σ. We define S to be a generalized subsequence of T if S can be produced
from T by generalizing and deleting items. We use the term subsequence as a synonym
for generalized subsequence in the following. We write this as S v T . Formally, S v T if
and only if there exist integers 1 ≤ i1 < i2 < ... < i|S| ≤ |T | such that ti1 ⇒∗ s1, ti2 ⇒∗

s2, ..., ti|S| ⇒∗ s|S|. One can see how one can derive several generalized subsequences by
deletions and generalizations in the following example for input sequence T1. We start on
the right with T1 and generalize or delete items in every step towards the left:

〈B〉 v 〈AB〉 v 〈Ab1〉 v 〈Acb1〉 v 〈a1cb1〉 v 〈a1cb1e〉 v 〈a1cb12e〉 = T1.

All these sequences are subsequences of T1. Sequence 〈AB〉, for example, is a subsequence
of T1. In total, with our example hierarchy H, input sequence T1 has 47 subsequences.
Some other examples are 〈Ae〉 v T1, 〈a1b1〉 v T1. However, 〈eA〉 and 〈cb11〉 are not:
〈eA〉 6v T1 and 〈cb11〉 6v T1.

The maximum number of subsequences of a sequence T is exponential in the length of
the sequence. Let n be the length of the sequence and for now, we ignore generalization.
Then the number of subsequences is 2n− 1. It is easy to see this when considering that we
can either include or exclude each item of sequence T . This gives two options per item, so
with n items we have 2n options. If one excludes every item of the sequence, we obtain the
empty sequence, which we do not consider a subsequence for our purposes, therefore 2n−1.

Now we consider generalization. The number of subsequences depends on the depth of
the hierarchy. So assume we can generalize each item of the sequence to four further items.
That gives six options per input item: exclude the item, include the item, or generalize
it to one of the four other items. So with a hierarchy of four, an input sequence T can
potentially produce (2 + 4)n − 1 subsequences. For a sequence of length n = 10, that are
about 60 million possible subsequences.

2.1.2 Problem definition

Algorithms for sequential pattern mining typically offer means to constrain the number
of subsequences that should be considered for the mining. Srikant and Agrawal (1996)
suggest sliding windows and time constraints. Since then, other types of constraints have
been introduced. Mooney and Roddick (2013) give an overview over suggested constraints.
Typically, an FSM algorithm supports only a subset of the available constraints.

Beedkar and Gemulla (2016a) aim to unify most of the proposed constraints into one
framework. To do this, they propose subsequence predicates.

A subsequence predicate constrains the set of subsequences of an input sequence that
is considered for the mining. Essentially, it divides the set of subsequences of an input
sequence into two parts. One part conforms with the predicate and is considered for the
mining. We call this part the candidate sequences generated by this input sequence. The
other part of the subsequences is discarded. Let π be a subsequence predicate. We denote
by S vπ T that S is a subsequence of T with respect to subsequence predicate π. We say
that T π-generates S.

Definition 1 (Candidate sequences) We depict as candidate sequences of a sequence
T with respect to subsequence constraint π all subsequences S of T that conform with π.
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We write
C ′(T, π) = {S | S vπ T}.

As discussed, input sequence T1 has 47 subsequences. However, we might be interested
only in the ones that start with item A, so we can restrict the set of subsequences to the
ones that start with A. That reduces the number of subsequences we consider to 16.

We aim to find generalized subsequences that occur in multiple input sequences. For
this, we define the support of a sequence. This definition then allows defining the FSM
problem with support for an item hierarchy and a subsequence predicate.

Definition 2 (Support of a sequence) Given a sequence database D, an item hierarchy
H, and a subsequence predicate π, the π-support of a sequence S is the set of input sequences
that π-generate S:

SupD,H,π(S) = {T ∈ D | S ∈ C ′(T, π)}

Definition 3 (FSM with item hierarchy and subsequence predicate) Given a se-
quence database D, an item hierarchy H, a subsequence predicate π, and a minimum sup-
port threshold σ > 0, find all (π,σ)-frequent sequences and output each of them along with
its frequency.
A sequence S is (π,σ)-frequent if at least σ input sequences π-generate it. That is, if

|SupD,H,π(S)| ≥ σ.

The frequency of a sequence S is |SupD,H,π(S)|.

Subsequence predicates give a flexible way to constrain the set of subsequences. As
an example, consider analyzing the products purchased in an online shop for electronics.
To improve recommendations, shop owners might be interested in the types of products
purchased after digital cameras. Alternatively, when analyzing a large text corpus, one
might be interested in the adjectives that are commonly used around a set of known
entities, for example around the names of a country’s former presidents. Subsequence
predicates in combination with hierarchies allow such mining tasks.

2.2 A computational model for subsequence constraints

We now look at how one can implement the abstract notion of a subsequence predicate.
We first present a language to express these predicates and then introduce a model to
efficiently compute candidate sequences from an input sequence.

2.2.1 Pattern expressions

To implement subsequence predicates, Beedkar and Gemulla (2016a) introduce a pattern
expression language. The language is based on regular expressions. One pattern expression
models one subsequence predicate. Of the set of all subsequences, only subsequences
that conform with the given pattern expression are considered. For this work, we do not
introduce the full pattern expression language. Instead, we focus on the aspects critical to
this work.
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Table 2.1: Item expressions, adapted from Beedkar and Gemulla (2016a)

Item expression Matches Outputs

ω ω′ ∈ desc(ω) –
(ω) ω′ ∈ desc(ω) ω′

ω↑ ω′ ∈ desc(ω) –
(ω↑) ω′ ∈ desc(ω) anc(ω′) ∩ desc(ω)

(ω↑=) ω′ ∈ desc(ω) ω

. ω′ ∈ Σ –
(.) ω′ ∈ Σ ω′

(.↑) ω′ ∈ Σ anc(ω′)

To understand the pattern expression language, we first look at an example pattern
expression and the candidate sequences it produces. We then explain how the elements of
the language work. Let us consider pattern expression π1 given by

π1 = A([c|d][A↑|B↑]+e).

A pattern expression is run on each input sequence and, for each input sequence, produces
zero or more candidate sequences. On input sequence T1 of our running example, this
pattern expression produces the following candidate sequences:

C ′(T1, π1) = {〈cb12e〉, 〈cb1e〉, 〈cBe〉} from T1 = 〈a1cb12e〉.

Other subsequences of T1, such as 〈a1b12e〉 or 〈ce〉, are not produced. From a similar
sequence T ′1 = 〈cb12e〉 and input sequences T2 and T4 of our running example, the pattern
expression produces the candidate sequences

C ′(T ′1, π1) = {} from T ′1 = 〈cb12e〉,
C ′(T2, π1) = {} from T2 = 〈b2a2b12e〉, and
C ′(T ′4, π1) = {〈dBe〉} from T4 = 〈a1dBe〉.

The building blocks of a pattern expression are item expressions. In our example, these
item expressions are A, c, d, A↑, B↑, and e. The item expressions can be combined in
various ways that are known from regular expressions. For example, item expressions can
be concatenated to match a succession of input items, such as ab2, or alternated, such as
[c|d], to use either of the two item expressions. Typical quantifications are also available.
For example, the + means that an item expression can be applied one or multiple times.

In regular expressions, an item A in the pattern expression would typically match
an A in the input sequence. We work with item hierarchies: an item expression A can
match multiple items. Typically, an item expression matches all its descendants. So in our
example, the A in the pattern expressions would match any input item A, a1, or a2. For
example, in input sequence T1, item a1 is matched by the A in the pattern expression.

Item expressions outside parentheses do not produce any output items and therefore
do not contribute items to the candidate sequences. We say these item expressions are
uncaptured. They are used to match context and can be seen as a way to delete the matched
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Figure 2.2: FST for pattern expression π1 = A([c|d][A↑|B↑]+e). Transitions are labeled
with item expressions, which determine the accepted input items and the produced output
items as defined in Table 2.1.

item from the subsequences. In our example, the first A is not enclosed in parentheses and
therefore does not contribute any items to the candidate sequences. However, if there is no
item to match an uncaptured item expression in the input sequence, the pattern expression
does not match the input sequence and no candidate sequence is produced. This is the
case for T ′1. It contains no item to match the uncaptured A part of the pattern expression.

Captured item expressions inside parentheses contribute output items to one or more
candidate sequences. This behavior can be modified with the upwards arrow. Without a
consecutive upwards arrow, an item expression produces the item it matched. For example,
if an item expression A matches an input item a1, it produces output item a1. If the
item expression is followed by an upwards arrow, generalizations of the matched item are
produced as well, but only up to the item specified in the item expression. For example, for
input sequence T1, item expression B↑ produces items b12, b1, and B from matched input
item b12. An overview of these options for item expressions is given in Table 2.1. A further
modifier, the subscript equality sign =, specifies that the item in the item expression is
output instead of the matched item. As in regular expressions, a dot can be used to match
any item.

2.2.2 Finite state transducers

To generate candidate sequences efficiently, Beedkar and Gemulla (2016a) introduce a
restricted form of finite state transducers (FST) as a computational model. An FST is
a finite-state machine. In contrast to other finite-state machines such as an NFA or a
deterministic finite automaton (DFA), an FST generates an output string while reading
the input string (Mohri, 1997). We omit a formal introduction of FSTs. Beedkar and
Gemulla (2016a) give a formal introduction of FSTs for pattern expressions.

Beedkar and Gemulla (2016a) propose methods to construct an FST for a given pattern
expression, such that, when reading a given input sequence as the input string, the FST
produces exactly the set of frequent candidate sequences for that input sequence as output.
Figure 2.2 presents an FST constructed from example pattern expression π1. For every
input sequence T , this FST produces exactly the set of candidate sequences C ′(T, π1). We
mark the initial state of the FST with an ingoing arrow and an accepting state of the FST
with a double outline.

The transitions of the FST are labeled with item expressions. Each transition matches
input items and produces output items according to this item expression. If a transition
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Table 2.2: The accepting path for input sequence T1 through the FST for pattern expression
π1

From → to states Transition Input item Output item(s)

0→ 1 A a1 –
1→ 2 (c) c c

2→ 3 (B↑) b12 b12, b1, B
3→ 4 (e) e e

is labeled with a captured item expression, it produces one ore more output items. For
example, the (c) transition from state 1 to state 2 matches any item ω′ ∈ desc(c) and
produces that item ω′. The (B↑) transition from state 2 to state 3 matches any item
ω′ ∈ desc(B) = {b11, b12, b1, b2, B} and produces all elements o ∈ anc(ω′) ∩ desc(B).
Consequently, if the matched item ω is b1 with anc(b1) = {b1, B}, the transition produces
items b1 and B, as {b1, B} ∩ {b11, b12, b1, b2, B} = {b1, B}.

The FST is run on each input sequence. The FST matches an input sequence T if,
starting from the initial state, we can take one consecutive input item ω from T per
transition and arrive at an accepting state. More formally, it matches an input sequence
T = 〈ω1ω2...ωn〉 if there is a succession of transitions u1u2...un, such that: transition ui

accepts item ωi for 1 ≤ i ≤ n, transition u1 originates in an initial state, transition un ends
in an accepting state, and transition ui originates in the target state of transition ui−1 for
2 ≤ i ≤ n. We call such a succession of transitions an accepting path through the FST and
say the FST for pattern expression π matches T . There can be multiple accepting paths
through an FST for one input sequence.

Throughout this thesis, we use example pattern expression π1 = A([c|d][A↑|B↑]+e).
We allow this pattern expression to match anywhere in an input sequence, without the
need to read the entire input sequence. That is, formally, we use pattern expression π1f.

π1f = .∗ A([c|d][A↑|B↑]+e) .∗

We omit the surrounding expression .∗ for better readability.
For example, for input sequence T1 = 〈a1cb12e〉, there is one accepting path through the

FST: starting from state 0, it takes transition A to state 1 with input item a1, transition
(c) to state 2 with input c, transition (B↑) to state 3 with input b12, and transition (e) to
state 4 with input e. Table 2.2 depicts this path along with the produced output items.

An accepting path produces a set of candidate sequences. Each transition of the ac-
cepting path produces either no output item (if uncaptured), or a group of output items,
which consists of one or more items. The path produces all sequences that can be created
by picking one item from each non-empty group of output items and arranging them in
order. If there are multiple accepting paths through the FST, the set of all candidate
sequences is constructed by the union of the candidate sequences of all accepting paths.

For example, the accepting path depicted in Table 2.2 generates the sets of output
items {}, {c}, {b12, b1, B}, {e}, in this order. By picking one item from each non-empty
set and arranging them in order, we can create the sequences 〈cb12e〉, 〈cb1e〉, and 〈cBe〉.
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If the last set of items would contain another hypothetical item E, we could additionally
create sequences 〈cb12E〉, 〈cb1E〉, and 〈cBE〉.

2.3 Sequential algorithms for FSM with declarative subse-
quence constraints

In this section, we briefly present three sequential algorithms for mining frequent sequences
in the presence of declarative subsequence constraints. We start with a naive approach
and a variation of the naive approach, DESQ-COUNT. Naive approaches are efficient
for selective pattern expressions, which generate only few candidate sequences. We then
discuss a more involved approach, DESQ-DFS, which is also applicable to less selective
patterns. The algorithms have been proposed by Beedkar and Gemulla (2016a). They are
sequential algorithms, so they run on one core of one machine, without parallel execution.

2.3.1 Naive

As a naive approach, one can proceed as follows: For each input sequence, generate all
candidate sequences. Then count how often each candidate sequence has been generated
and output the ones that have been generated at least σ times.

This approach works efficiently for pattern expressions that generate a small number
of candidate sequences. We call such pattern expressions selective. For these pattern
expressions, it is possible to generate all candidate sequences and count their occurrences
in a reasonable time.

For pattern expressions that produce many candidate sequences, this approach is ineffi-
cient or even infeasible. An input sequence can have exponentially many subsequences. An
unselective pattern expression excludes only some of these subsequences. Consequently,
producing and storing all candidate sequences can take exponential time and space. An
exponential increase in time can make the algorithm run long. An exponential increase in
space can make the algorithm infeasible if it needs more space than the executing machine
can offer.

2.3.2 DESQ-COUNT

DESQ-COUNT is mostly identical to the naive approach but improves on it in one way.
That is, it also produces candidate sequences and counts their occurrence. However, instead
of producing all candidate sequences of each input sequence, it produces only a subset of
candidate sequences. It omits a particular group of candidate sequences, for which it can
be sure that they will not be a frequent sequence.

To do this, DESQ-COUNT makes use of one key observation: if a candidate sequence
contains any item ω that itself ‘occurs’ in less than σ input sequences, this candidate
sequence cannot occur in more than σ input sequences. In our running example, item b11

occurs only in input sequence T3 and no other input sequence. Therefore, any candidate
sequence containing b11 cannot be a frequent sequence for any σ ≥ 2. The notion of in how
many input sequence an item ω ‘occurs’ we define as item frequency. However, we work
with an item hierarchy, which allows an item to produce generalized items as candidate
sequences. We need to take this into account for our definition of item frequency.
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Definition 4 (Item frequency) The item frequency of an item ω ∈ Σ is given by the
number of input sequences that contain item ω or any of its descendants. We write

f(ω) = |{T ∈ D | ω′ ∈ T and ω′ ∈ desc(ω)}|.

We say that an item ω is frequent if f(ω) ≥ σ. Otherwise, we say the item is infrequent.

For each input sequence, DESQ-COUNT produces only the candidate sequences that
consist only of frequent items: the set of frequent candidate sequences.

Definition 5 (Frequent candidate sequences) The set of frequent candidate sequences
of an input sequence T with respect to a pattern expression π1 is a subset of all candidate
sequences of T . The subset contains the candidate sequences that contain only frequent
items. We write

C(T, π) = {S ∈ C ′(T, π) | f(ω) ≥ σ for all ω ∈ S}.

Note that C(T, π) depends on σ. We omit this dependency from our notation for better
readability.

In contrast, the item frequency f(ω) for a single item is independent of minimum
support σ and pattern expression π. Consequently, it can be precomputed. DESQ-COUNT
computes a list of item frequencies f(ω) for all items ω ∈ Σ before the mining is run. This
list is called the f-list. Figure 2.1(c) depicts the f-list for example sequence database Dex,
considering item hierarchy Hex.

Let us consider an example. For input sequence T3 = 〈a2da1a2b11e〉 of our example
sequence database, the set of all candidate sequences for pattern expression π1 is as follows:

C ′(T3, π1) = {〈da1a2b11e〉, 〈da1a2b1e〉, 〈da1a2Be〉, 〈da1Ab11e〉, 〈da1Ab1e〉, 〈da1ABe〉,
〈dAa2b11e〉, 〈dAa2b1e〉, 〈dAa2Be〉, 〈dAAb11e〉, 〈dAAb1e〉, 〈dAABe〉}.

When setting σ = 2, item b11 is infrequent: f(b11) = 1 < 2 = σ. Therefore, no
sequences containing b11 can be frequent. So they are not included in the set of frequent
candidate sequences:

C(T3, π1) = {〈da1a2b1e〉, 〈da1a2Be〉, 〈da1Ab1e〉, 〈da1ABe〉,
〈dAa2b1e〉, 〈dAa2Be〉, 〈dAAb1e〉, 〈dAABe〉}.

The elimination of infrequent items is an adaptation of the more general support anti-
monotonicity property, which is used in many frequent itemset mining and sequential
pattern mining algorithms. The more general case says that any subsequence of a frequent
sequence must be frequent. This property holds for unconstrained FSM and certain tra-
ditional constraints. For the setting of declarative constraints, this property might hold
for some particular pattern expression, but does not hold in general. Therefore, DESQ-
COUNT considers only single item frequencies.

To recap, DESQ-COUNT uses an FST for the given pattern expression and the given σ
to directly produce the set of frequent candidate sequences C(T, π) for all input sequences
T ∈ D. It then aggregates all produced candidate sequences by count and outputs the
ones that have been produced from more than σ input sequences.
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Beedkar and Gemulla show that eliminating candidate sequences that contain infre-
quent items can significantly reduce the number of candidate sequences. The actual effect
depends mostly on the value chosen for σ. The larger σ, the more items are infrequent,
and consequently, the more candidate sequences can be eliminated.

However, for many pattern expressions, DESQ-COUNT still produces many candidate
sequences and consequently is, as the naive approach, inefficient or infeasible for these
settings.

2.3.3 DESQ-DFS

To address this issue, Beedkar and Gemulla (2016a) introduced a more involved algorithm,
DESQ-DFS. They show that DESQ-DFS can be more than an order of magnitude faster
than DESQ-COUNT for unselective pattern expressions. For selective pattern expressions,
DESQ-DFS has performance comparable with DESQ-COUNT. We briefly present the core
idea of DESQ-DFS here.

DESQ-DFS adapts the pattern-growth approach of PrefixSpan (Pei et al., 2001). A key
goal of pattern-growth is to prevent the generation of candidate sequences that will turn
out not to be a frequent sequence. The earlier in the mining process one can decide that a
sequence will turn out to be infrequent, the more unnecessary computation can be avoided.

The pattern-growth approach generates frequent sequences by growing a sequence item
by item. It starts with an empty sequence and expands the sequence by repeatedly append-
ing single frequent items. As items are only appended, the growing sequence is often called
the prefix. After each expansion, pattern-growth checks whether the current prefix S can
lead to a frequent sequence. If it finds that S cannot lead to a frequent sequence, it does not
expand S further. Instead, it removes the last appended item and tries other expansions.

To efficiently check whether the current prefix S can lead to a frequent sequence,
pattern-growth methods typically build an inverted index for every prefix. For a prefix S,
the data structure holds a list of input sequences that can generate S. If the list contains
less than σ input sequences, expansion can be stopped. When a new prefix Sω is created
by appending ω to the current prefix S, the new inverted index for Sω is constructed by
filtering input sequences in the inverted index of S.

Originally, pattern-growth works directly on input sequences. DESQ-DFS incorporates
the FST for the given pattern expression into the mining process. In the inverted index for
a prefix S, DESQ-DFS stores a list of input sequences, from which the FST can produce
the prefix. It additionally stores two further details in the index. It stores the state the
FST is in after producing prefix S. Also, it stores the position of the next input item in
the input sequence.

By checking the frequency of each prefix and stopping expansion of infrequent pre-
fixes early, DESQ-DFS does not produce the large number of candidate sequences DESQ-
COUNT produces. Therefore, in contrast to DESQ-COUNT, it performs well also for
pattern expressions that produce many candidate sequences per input sequence.
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2.4 Apache Hadoop and Apache Spark

MapReduce is a programming model and a runtime system originally developed at Google
(Dean and Ghemawat, 2004). Originally a proprietary system, the MapReduce program-
ming model has been widely adopted and was implemented in many systems, most com-
monly known in the popular open-source project Apache Hadoop1.

The MapReduce programming model aims to facilitate distributed data processing
on a cluster of network-connected computers, which are typically called the nodes of the
cluster. Typically, data for MapReduce computational tasks is distributed among these
nodes. Drawing from functional programming, MapReduce allows applications to define
map and reduce functions. These functions are executed in parallel on parts of the data.
Map functions execute steps on data records in parallel, reduce functions combine parts of
the data, which makes communication between the nodes necessary. The run time system
takes care of load balancing, redistributes data between consecutive map and reduce calls,
and handles node failures.

Recent versions of Apache Hadoop implement the MapReduce programming model,
the distributed file system HDFS (Shvachko et al., 2010), and a run time system with a
resource management platform YARN (Vavilapalli et al., 2013).

Apache Spark (Zaharia et al., 2010) is an open-source data flow engine that builds on
the MapReduce programming model. It aims to make MapReduce more applicable for
iterative tasks and simplifies the programming interface. Its key modification to Hadoop
is that it seeks to keep intermediary results in memory whenever possible. For some tasks,
this modification can lead to significant speed-ups (Zaharia et al., 2010).

We use Apache Spark as computational model for our implementation because it is
widely adopted and because it offers several additional high-level functions that facili-
tate the development of distributed applications compared to Hadoop MapReduce. For
example, such functions make it convenient to pre-process datasets, which makes our im-
plementation comfortable to use for others.

2.5 Related work on distributed FSM

Sequential Pattern Mining is an active field of research, with many proposed algorithms.
Mabroukeh and Ezeife (2010) and Mooney and Roddick (2013) give an overview of the
field. Many of these algorithms run only sequentially and, consequently, are of limited use
for large datasets. To mine large datasets efficiently, parallel algorithms have been devel-
oped for shared-memory architectures (Zaki, 2001) and distributed memory architectures
(Guralnik et al., 2001; Guralnik and Karypis, 2004), but without support for constraints
or hierarchies.

More recently, algorithms for specific applications of sequential pattern mining (Zihayat
et al., 2016) and algorithms for parallel frequent itemset mining (Qiu et al., 2014) have
targeted Apache Spark as a computational platform. Apache Spark’s integrated machine
learning library MLLIB (Meng et al., 2016) features a distributed version of PrefixSpan (Pei
et al., 2001) for distributed FSM, but also without hierarchies or subsequence constraints.

1https://hadoop.apache.org
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Most related to our work is a group of distributed sequential pattern mining algorithms
targeted towards the MapReduce programming model: Suffix-σ (Berberich and Bedathur,
2013), MG-FSM (Miliaraki et al., 2013; Beedkar et al., 2015), and LASH (Beedkar and
Gemulla, 2015).

Suffix-σ is an algorithm developed for one specific case of FSM: mining of frequent n-
grams. An n-gram is a consecutive subsequence consisting of n items. Suffix-σ can mine all
n-grams up to a specified length in one map and one reduce step. This is achieved by careful
partitioning and, compared to other methods that Berberich and Bedathur study, which
execute multiple map and reduce steps in succession, decreases run times significantly.

MG-FSM is a scalable distributed algorithm for FSM. It is also developed for the
MapReduce programming model and also runs in one map and one reduce step. It allows
for gap and length constraints. In the map step, MG-FSM processes input sequences in
parallel. It then groups input sequences into partitions such that partitions can mine for
frequent sequences independently. To group the extracted information, MG-FSM uses
item-based partitioning.

Item-based partitioning divides the space of possible frequent sequences by one particu-
lar item in each sequence. The idea was introduced by Han et al. (2000) for frequent itemset
mining and is used in several algorithms for parallel frequent itemset mining (Buehrer et al.,
2007; Cong et al., 2005; Li et al., 2008). The partitioning in MG-FSM creates one parti-
tion Pω for each frequent item ω in the vocabulary. This item ω is called the pivot item
of a partition.

At each partition, subsequences with ‘largest’ item ω are mined and output. This
notion of the ‘largest’ item is based on the total order established by the f-list. This f-list
based ordering is also used in FP-Growth (Han et al., 2000) and PFP, a parallel version
of FP-Growth (Li et al., 2008). As an input sequence can have multiple subsequences
and these subsequences might have different ’largest’ items, an input sequence might be
required for the mining process at different partitions. An input sequence is sent to all
partitions where it contributes at least one relevant subsequence.

To reduce the communication between the nodes of the cluster, MG-FSM introduces
a couple of techniques. First, it only sends an input sequence to partitions for which it
can produce a relevant subsequence. Further, MG-FSM proposes a number of rewrites for
the sent input sequences. It eliminates parts of input sequences that are not relevant for a
specific partition. Parts that are irrelevant but cannot be omitted completely are rewritten
so they can be sent more concisely.

To achieve correctness for these input sequence rewrites, MG-FSM introduces the no-
tion of ω-equivalency. Let T be an input sequence that produces a certain set of subse-
quences relevant for partition Pω. A rewritten input sequence T ′ is ω-equivalent to the
original input sequence T if it produces the equivalent set of subsequences relevant for par-
tition Pω. Consequently, T ′ can be sent to the partition instead of T without sacrificing
correctness. If T ′ is more compact than T , this reduces the amount of communication
between the nodes.

LASH (Beedkar and Gemulla, 2015) extends MG-FSM with hierarchies. An item is
allowed to generalize to another item in the item hierarchy. As MG-FSM, it supports
maximum gap and maximum length parameters. LASH also runs in a single map and
reduce step and adapts the item-based partitioning scheme. It introduces a hierarchy-
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aware version of item-based partitioning, which creates partitions for generalized items as
well. It adapts the notion of ω-equivalency to work with hierarchies.

LASH further introduces a local mining algorithm that is designed specifically for the
item-based partitioning scheme. The algorithm is based on the pattern-growth approach.
At each partition Pω, it makes sure to produce only frequent sequences that are relevant
for pivot item ω. LASH starts pattern-growth by setting the growing sequence to the pivot
item ω. It then expands the sequence to both the left and the right by appending items.
This makes sure that the mining process does not generate frequent sequences that do not
contain the pivot item and are therefore irrelevant for this partition.

To the best of our knowledge, no distributed or parallel algorithm has yet been proposed
for FSM with subsequence constraints based on regular expressions or pattern expressions.
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Chapter 3

Distributed FSM with declarative
subsequence constraints

3.1 A naive approach: distributed DESQ-COUNT

Before we develop a more efficient algorithm in the following sections, we first use this
section to discuss a naive approach to the problem and its limitations.

3.1.1 Algorithm

For the sequential algorithm DESQ-COUNT proposed by Beedkar and Gemulla (2016a),
there exists a natural distributed version. One can express this distributed version using
one map step, one reduce step, and one filter step in Apache Spark or the MapReduce
framework in general. We assume that each of the nodes of the cluster holds a part of
the input sequences. We further assume that single item frequencies are known before the
algorithm is run. That is, we send a copy of the f-list to each node before we start the
mining. The mining algorithm proceeds as follows:

1. In the map step, we produce the set of frequent candidate sequences C(T, π) for each
input sequence in parallel.

2. We aggregate the produced candidate sequences by count. For that, it is necessary
to collect all occurrences of one candidate sequence at one node. This can be done
efficiently in a reduce step.

3. We output the candidate sequences that have a count larger or equal σ. This can be
done in a filter step.

We now discuss each step in more detail.
First, in the map step, one uses the FST to produce the frequent candidate sequences

for every input sequence. This works as it does in sequential DESQ-COUNT, only that
we generate the frequent candidate sequences in parallel: the generation of the frequent
candidate sequences depends only on the FST and σ and can consequently be done in-
dependently for each input sequence. By passing the FST to all participating nodes in
the cluster, each node can generate the candidate sequences for its share of the sequence
database. As in the sequential version of DESQ-COUNT, it is not necessary to produce any
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candidate sequences that contain an infrequent item, because these candidate sequences
cannot be globally frequent.

Second, we aggregate the produced candidate sequences by count. To do this, all counts
of one candidate sequence have to be sent to one node. For example, assume a candidate
sequence C1 is produced from 200 input sequences at node 1 and from 150 input sequences
at node 2; and σ is set to 300. To decide that C1 is frequent, one node needs to know about
all occurrences of C1, for example, node 1. Each candidate sequence C is assigned to one
node of the cluster and information about all occurrences of that candidate sequence C is
sent to this node. As we merely count the number of occurrences of a candidate sequence,
the counts can be aggregated locally before they are sent to the responsible node. For
example, we can send information (C1, 200) from node 1 to node 2. Node 2 then sums
up the two counts to a total count of 350. In Apache Spark, an adequate reduce function
takes care of this aggregation.

Third, with the total count for a candidate sequence, a node can decide whether a
candidate sequence is frequent and should, therefore, be output, or infrequent and, there-
fore, should not be output. This can be expressed as a filter step, in which all candidate
sequences with a total count smaller than σ are not output. For the example candidate
sequence C1, node 1 decides that, with a total count of 350, C1 is (π,σ)-frequent and
therefore outputs the sequence with its total count 350.

3.1.2 Limitations

As the sequential version, the distributed version of DESQ-COUNT works well for pat-
tern expressions that produce a manageable number of candidate sequences for each
input sequence.

However, the distributed version of DESQ-COUNT has the same limitation as the
sequential variant. It generates and communicates all frequent candidate sequences. For
pattern expressions that are not selective, this can exponentially increase the amount of
memory or disk space to hold the candidate sequences. Sending an exponential number of
candidate sequences and aggregating each of them by count can lead to slow run times.

Let us consider a worst case scenario: a pattern expression that generates all possible
subsequences. As discussed before, when assuming that each item in the sequence can
generalize to four other items and n being the length of the input sequence, the maximum
number of subsequences is (2 + 4)n − 1. Assume we have an input sequence of length
n = 200, which is not untypical – some input sequences in the real-world datasets we
use in our experiments are longer than 20 000 items. For n = 200, there is a theoretical
maximum of 4.26 × 10155 possible subsequences. If we assume an average length of 100
for the subsequences and that we store each item in a subsequence as a 4-byte integer,
we would need ((2 + 4)200 − 1) × 100 × 4 ≈ 1.7073 × 10158 bytes to store all candidate
sequences. That is approximately 1.5528× 10146 terabytes – much more than one machine
can typically hold.

This is a worst case scenario. The purpose of allowing pattern expressions is to be
more selective than allowing all subsequences. Also, the actual number of subsequences
is usually lower than the theoretical maximum, as items might reoccur within a sequence
and, therefore, do not create distinct subsequences. Also, items in the hierarchy might
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reoccur, and not all item hierarchies have four generalizations for each item. On the other
side, real world datasets can contain input sequences longer than 200 items.

In our experiments, generating all candidate sequences lead to a significant increase
in run time also for pattern expressions that produce fewer candidate sequences than the
theoretical maximum. For their sequential algorithms, Beedkar and Gemulla (2016b) show
that DESQ-DFS, which does not produce all candidate sequences, can run up to 22 times
faster than DESQ-COUNT for such pattern expressions. To mine frequent sequences for
these pattern expressions efficiently in the distributed setting, we need a different strategy
for distributing the work across nodes of the cluster. We discuss a framework for such
an algorithm in the following section and describe its components in more detail in the
sections that follow.

3.2 Overview of the proposed algorithm

The key challenge for a parallel algorithm is to decompose a large computational problem
into smaller problems that can be solved independently. In a distributed algorithm, the
smaller problems are processed on physically separate computers.

In the previous section, we have seen one approach to doing this. The distributed
version of DESQ-COUNT splits the work of generating candidate sequences, exchanges
information between the nodes, and then aggregates and filters independently again. We
have also seen the limitations of this approach. In this section, we lay out the framework for
a distributed algorithm that can overcome these limitations for many pattern expressions.
Our method carefully partitions the work such that most of the work can run in parallel.
The approach does not require to produce all candidate sequences. In this section, we give
a general intuition of how the approach works before we look at each part of the approach
in more detail in the upcoming sections.

For this approach to work, we need a way to group candidate sequences. The key
requirement is still that all occurrences of one candidate sequence C1 have to be sent to
one node, such that this node can decide whether candidate sequence C1 occurs more than
σ times in the sequence database D. For now, assume that we have a way to do this:
suppose that we have a scheme to assign one candidate sequence to one partition. Many
candidate sequences can belong to one partition, but one candidate sequence belongs to
exactly one partition. We discuss the scheme in more detail in Section 3.3.

A partition is assigned to one node of the cluster. Typically, in our scheme, the number
of partitions is larger than the number of nodes, so each node is assigned multiple partitions.
The nodes can then process the assigned partitions independently and in parallel.

Each node needs to receive the candidate sequences from all input sequences that
contribute towards its partitions. We discussed before that one input sequence T can
produce no or multiple candidate sequences. Therefore, one input sequence can contribute
information to zero or more partitions.

Our algorithm is executed in two main stages, with a communication stage in-between:

1. In parallel at each node, run the FST on each input sequence and determine for
which partitions the input sequence produces candidate sequences.
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node 1

node 2

node n

...

stage 1: determine partitions stage 2: shuffle stage 3: mine locally

input sequences intermediary information partitions frequent sequences

Figure 3.1: Overview of the three stages of the proposed algorithm

2. Assign each partition to a node and send information about each candidate sequence
to the node responsible for its partition.

3. In parallel at each node, mine for frequent sequences in the partitions.

Figure 3.1 portrays this approach. One horizontal lane represents one node in the clus-
ter. Each of these nodes holds a part of the input data at the start of stage 1, depicted
as small rectangles with sharp corners. In step 1, each node processes each of the input
sequences it holds. The goal is to decide for which partitions the input sequence generates
candidate sequences and to extract information about these candidate sequences that we
can send to the partition. Packages of extracted information are depicted as rectangles
with rounded corners. In stage 2, after assigning partitions to physical nodes, the extracted
information is redistributed to the nodes responsible for the partitions. The redistribution
of data between the nodes of a distributed system is commonly referred to as a shuffle.
In stage 3, each node mines its assigned partitions and outputs found frequent sequences.
In the figure, partitions are indicated as dotted lines around groups of intermediary infor-
mation. Frequent sequences are depicted as rectangles with sharp corners. Each partition
outputs only frequent sequences that belong to its partition.

This two-stage approach with one shuffle is a well-known approach in distributed data
processing and is also frequently employed in distributed FSM algorithms (Miliaraki et al.,
2013; Beedkar and Gemulla, 2015): data is processed in parallel, redistributed between the
nodes of a cluster, and then processed in parallel again. The three stages of the algorithm
can be seen as a map, a shuffle, and a reduce step of the MapReduce programming model.

We now discuss each of these steps in more detail. The following section, Section 3.3,
discusses our method to partition the candidate sequences. Section 3.4 explains how we can
send information about the candidate sequences to the partitions. Section 3.5, Section 3.6,
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and Section 3.7 discuss how to send this information efficiently. Section 3.8 then deals with
the third stage of our approach, the local mining.

3.3 Decomposing the problem using item-based partitioning

So far we assumed that we have a way to partition the space of all possible candidate
sequences into a number of partitions, such that each partition can be processed indepen-
dently. We now discuss this method in more detail.

We have seen the approach of DESQ-COUNT, which can be seen as generating one
partition for each candidate sequence. We have also seen that for some pattern expressions,
this approach is infeasible, as it produces and communicates all candidate sequences.

We adopt the item-based partitioning framework of MG-FSM (Miliaraki et al., 2013),
which is also used in LASH (Beedkar and Gemulla, 2015). We further adopt MG-FSM’s
notion of ω-equivalency for rewriting input sequences.

3.3.1 Pivot items

Key intuition is to assign a sequence, in our case, each candidate sequence, to a partition
based on one specific item in the sequence. For example, one could choose the first item
in a sequence. If the first item of a sequence is a1, it is assigned to partition a1. We call
the item that decides about the partition of a sequence the pivot item.

Instead of choosing the first item of a sequence, we adopt the approach chosen in MG-
FSM (Miliaraki et al., 2013; Beedkar et al., 2015) and LASH (Beedkar and Gemulla, 2015).
These algorithms pick as pivot item the least frequent item in a sequence. As there might
be two least frequent items ω and ω′ with f(ω) = f(ω′) in a sequence, we establish a
total order on the items of the item vocabulary, based on item frequency in the sequence
database. Formally, we define a total order on all items of the item vocabulary Σ, such
that either ω < ω′ or ω > ω′ for all ω, ω′ ∈ Σ, ω 6= ω′. The ordering is based on item
frequency, such that for ω < ω′ it must hold f(ω) ≥ f(ω′). In cases of equal frequency
f(ω) = f(ω′), ties are broken arbitrarily. The order in which the items appear in the f-list
is such a total order.

For our running example, the ordering is as follows:

A < B < e < a1 < b1 < b2 < d < a2 < b12 < c < b11 with

f(A) = f(B) = f(e) > f(a1) > f(b1) = f(b2) = f(d) > f(a2) = f(b12) = f(c) > f(b11).

This method to order items might seem counter-intuitive, as, for example, item e is
‘smaller’ than item a1, although e is more frequent. We adopt this notation from MG-
FSM and LASH for consistency, but acknowledge that it can take some getting used to
for readers at first. It can help to think of the order in terms of the f-list: the order is
equivalent to the order the items appear in the f-list: A is the first item in the f-list, B is
the second item in the f-list, and so on. With this order, we can define the pivot item of a
sequence.

Definition 6 (Pivot item of a sequence) We denote as the pivot item of a sequence S
the largest item in the sequence. We write

p(S) = {ω | ω ≥ ω′ for all ω′ ∈ S}
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Informally, the pivot item of a sequence S is that item ω in the sequence that is the
furthest down in the f-list. The total order ensures that for every given sequence, there
is an unambiguous pivot item such that each candidate sequence can unambiguously be
assigned to exactly one partition.

In our approach, we assume that the f-list and therefore this order is known at every
node before we start the partitioning. In our implementation, we store a copy of the f-list
with the sequence database and send it to all nodes at the start of the algorithm. If the
f-list is unknown, it can be computed efficiently in one map and reduce job: the map counts
the generalized frequencies of items in all sequences in parallel, the reduce sums them up.
We then sort items by decreasing frequency at one of the nodes.

3.3.2 Partitions

We generate one partition Pp for every frequent item p. Using the intermediary information
sent to the partition, each partition mines for frequent sequences independently of the other
partitions.

At partition Pp, frequent sequences with pivot item p are mined and output. Conse-
quently, frequent patterns found at partition Pp contain pivot item p at least once and
otherwise, only items smaller p. If a sequences contains an item ω > p, it is output at
partition Pω if p(S) = ω or Pp(S) if the sequence contains items larger ω.

There is no need to construct partitions for infrequent items, that is, items ω with
f(ω) < σ. As we established in Section 2.3.2, a frequent sequence cannot contain an
infrequent item. All sequences that Pω would output contain ω at least once and are
therefore infrequent.

To produce correct results, that is, to output all frequent sequences with the correct
frequency, it is necessary that each partition Pp is provided with information about all
input sequences that produce a frequent candidate sequence with pivot item p.

3.3.3 Partitions for an input sequence

In the first step of our algorithm, for each input sequence T , it is necessary to determine
which partitions require information about T . We define the set of pivot items of an input
sequence as follows.

Definition 7 (Pivot items of an input sequence) Given a pattern expression π and
a minimum support value σ, an input sequence T produces a set of frequent candidate
sequences C(T, π). We call the set of pivot items of these candidate sequences the pivot
items of the input sequence T :

P (T, π) = {p(S) | S ∈ C(T, π)}.

We say that an input sequence T is relevant for all partitions Pp for p ∈ P (T, π). Note
that P (T, π) contains only frequent items, as the candidate sequences in C(T, π) contain
only frequent items.

Figure 3.2 presents an example for item-based partitioning for our running example with
pattern expression π1 = A([c|d][A↑|B↑]+e). We set the minimum support value to σ = 2.
For each input sequence, we have zero or more frequent candidate sequences C(T, π). Each
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T1 : 〈a1cb12e〉 〈 c b12e〉, 〈 c b1e〉, 〈 c Be〉

T2 : 〈b2a2b12e〉

T3 : 〈a2da1a2b11e〉 〈da1 a2 b1e〉, 〈da1 a2 Be〉,
〈 d a1Ab1e〉, 〈 d a1ABe〉,
〈dA a2 b1e〉, 〈dA a2 Be〉,
〈 d AAb1e〉, 〈 d AABe〉

T4 : 〈a1dBe〉 〈 d Be〉

T5 : 〈ea1b2e〉

T6 : 〈a1ca1a1b2ea1cb2eda1〉 〈 c a1a1b2e〉, 〈 c a1a1Be〉,
〈 c a1Ab2e〉, 〈 c a1ABe〉,
〈 c Aa1b2e〉, 〈 c Aa1Be〉,
〈 c AAb2e〉, 〈 c AABe〉,
〈 c b2e〉, 〈 c Be〉

input sequences frequent candidate sequences partitions

Pc

Pa2

Pd

Figure 3.2: Item-based partitioning for pattern expression π1 = A([c|d][A↑|B↑]+e) and
minimum support σ = 2 on example sequence database Dex. Pivot items are marked by
gray shading.

of the candidate sequences has one pivot item. In the figure, the pivot items are marked by
gray shading. An input sequence is relevant for the partitions corresponding to the pivot
items of all its candidate sequences. For example, sequence T1 produces three candidate
sequences, which all have item c as pivot item. Therefore, input sequence T1 is relevant
for partition Pc. T3 on the other hand produces frequent candidate sequences with pivot
items a2 and d, so it is relevant for the partitions Pa2 and Pd.

For this example, there are three non-empty partitions Pc, Pa2 , and Pd. The other
partitions are empty, that is, they do not receive any intermediary information and conse-
quently do not output any frequent sequences.

3.3.4 Discussion

Beedkar et al. (2015) show that choosing the least frequent item as pivot item can lead to
more evenly distributed partition sizes. Partitions of frequent pivot items tend to receive
information from many input sequences, but the information tends to be short, as longer
sequences are more likely to contain other, less frequent items. These sequences are sent
to other partitions. Partitions of less frequent pivot items tend to receive information from
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fewer input sequences, but the size of the sent information is larger, as the sequences are
longer. On average, this seems to lead to more homogeneous partition sizes.

As LASH, we use a hierarchy-aware variant of item-based partitioning. Assume input
sequence T contains item b11, which generalizes to b1 and B. If all of them are pivot
items, input sequence T is relevant for partitions Pb11 , Pb1 , and PB. This is crucial for the
correctness of our framework, but requires many sequences to be shuffled, as the partitions
Pb11 , Pb1 , and PB might end up at different nodes. In future work, it could be interesting
to examine whether one can decrease shuffle size by grouping partitions.

If all candidate sequences have one identical pivot item, item-based partitioning creates
only one partition and effectively runs sequentially in the third stage. More specifically,
there need to be more distinct pivot items than the desired degree of parallelism in the
third stage. Ideally, there are many more distinct pivot items than the desired degree
of parallelism to accommodate longer-running partitions. For typical pattern expressions,
this should not be an issue. In all our experiments, the number of partitions is significantly
higher than the desired degree of parallelism.

3.4 Sending information to the partitions

With item-based partitioning, we need to decide how to communicate the candidate se-
quences of an input sequence to the relevant partitions. There are two main options
to do this, which we discuss in the following: sending the input sequence and sending
candidate sequences.

The main requirement for the information we send from an input sequence T to a
partition Pp is that we can reproduce all frequent candidate sequences of T with pivot
item p from this information. It is not necessary to reproduce candidate sequences that
contain infrequent items, as they cannot be a frequent sequence. We define the set of
frequent candidate sequences with pivot item p as follows:

Definition 8 (Frequent candidate sequences for one partition) The frequent can-
didate sequences of one input sequence T that are relevant for the partition Pp of pivot
item p are the frequent candidate sequences of T that have pivot item p. We write:

Cp(T, π) = {S ∈ C(T, π) | p(S) = p}

From each input sequence T , we aim to send information to partition Pp such that we
can reconstruct Cp(T, π) at the partition.

Typically, this involves significant network communication between the nodes of the
cluster, which is typically a bottleneck in distributed algorithms. So we further want the
information we send to the partitions to be compact in size. Of course, both constructing
and reading the representation should be reasonably fast.

3.4.1 Sending the input sequence

To send input sequences as information, one proceeds as follows. For each input sequence
T, we check whether it matches the given pattern expression by running the FST. If it
matches, we determine the relevant partitions P (T, π) of the input sequence and send the
input sequence to these partitions.
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At the partition, we can generate all frequent candidate sequences relevant for the
partition by running the FST on the input sequence. The FST produces all frequent
candidate sequences C(T, π), including candidate sequences with pivot items other than
p, which are irrelevant for this partition. The local mining at the partition discards these
candidate sequences. For example, at partition d, input sequence T3 produces candidate
sequence 〈da1a2b1e〉, which has pivot item a2 and is therefore irrelevant for partition d.

Sending the input sequence is a comparably concise option for pattern expressions that
produce a large number of candidate sequences for one pivot item. In our example, T3
produces four candidate sequences for partition d. In this case, it is more concise to send
input sequence T than to send the four candidate sequences.

Sending the input sequence means that the FST needs to be run twice on this input
sequence. Once to determine the partitions for the input sequence and once at the partition,
to produce the set of candidate sequences.

3.4.2 Sending candidate sequences

For some pattern expressions, it can be more concise to send the set of frequent candidate
sequences. This is usually the case when pattern expressions generate a small number of
candidate sequences per pivot item or if these candidate sequences are shorter than the
input sequence.

Say, for example, that an input sequence generates ten candidate sequences that are
much shorter than the input sequence, and each candidate sequence has a distinct pivot
item. Then one could either send the long input sequence to the ten partitions or each
short generated candidate sequence to its partition.

To send the candidate sequences, one would proceed as follows. For each input sequence
T , we check whether it matches the given pattern expression by running the FST. If it
matches, we produce the frequent candidate sequences and send the candidate sequences
for a pivot item Cp(T, π) to the corresponding partition p ∈ P (T, π).

Sending candidate sequences has one crucial advantage: at the partitions, it is not
necessary to run the FST again. As FST simulation is the most time-consuming part for
most pattern expressions, this is a considerable advantage, which has proven crucial in
our experiments.

3.4.3 Discussion

If candidate sequences are shorter than the input sequences, one could consider sending
only the relevant parts of an input sequence. One could drop parts of the input sequence
that are not relevant for the pattern expression. For example, in input sequence T6, one
could drop the items after the last e, producing T ′6 = 〈a1ca1a1b2ea1cb2e〉. This trimmed
input sequence T ′6 produces equivalent candidate sequences and can thus be sent to the
partitions instead of T6. Beedkar et al. (2015) propose similar rewrites for MG-FSM.
For the setting of traditional subsequence constraints, they propose to send only relevant
parts of the input sequences. To adapt these rewrites to the more general case of pattern
expressions, additional work is required.

There might be additional potential to send even more concise input sequences. Un-
captured items, such as the first A in pattern expression A([c|d][A↑|B↑]+e), are sent to the
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partition as part of the input sequence, but do not contribute items to candidate sequences.
However, these items are relevant for the pattern expression to match. If we drop these
items from the input sequence, the pattern expression does not match the input sequences.
One could, for example, find ways to replace these items by placeholders, potentially re-
ducing the size of necessary communication. This idea is used by Beedkar et al. (2015) for
traditional subsequence constraints. They propose to replace items, which are irrelevant
for the produced subsequences, but crucial to conform to maximum-gap constraints, by
placeholders, which can be encoded more concisely than the original items. In the setting
of pattern expressions, such placeholders might be an option, but one could also consider
modifying the FST.

Despite these considerations, one crucial disadvantage of sending the input sequence
remains: the FST has to be run twice on each relevant input sequence. Once in the map
stage to find the partitions relevant for the input sequence and once in the mine stage to
produce the set of candidate sequences. As the FST simulation is the most computationally
expensive component of our algorithm, this is an important factor.

For this reason, we focus on sending candidates sequences in this work. Nevertheless,
we hypothesize that sending the input sequence with appropriate rewrites of the input
sequence and adapted local mining can work well for pattern expressions that are similar
to traditional FSM, that is, produce many subsequences per input sequence.

For pattern expressions that produce a small number of candidate sequences, one could
send a list of the candidate sequences to the partition. However, for other pattern expres-
sions that produce a larger number of candidate sequences, this approach can lead to an
exponential increase in the size of the necessary communication, as the number of candidate
sequences can be exponential in the worst case.

Therefore, this approach would not improve over the distributed version of DESQ-
COUNT. In the following, we propose a more concise representation for the set of candidate
sequences for a partition.

3.5 Compactly representing candidate sequences

In this section, we propose NFAs as a method to compactly represent a set of candidate
sequences that is sent from one input sequence T to one partition Pp. The requirement for
this representation is that we can produce the set Cp(T, π) at the partition. Our goal is to
find a representation that is compact and can be constructed efficiently.

As discussed in the previous section, the advantage of sending candidate sequences is
that the FST is run only once. However, for some pattern expressions, the set Cp(T, π)

can have size exponential in the length of input sequence T . A naive approach to sending
a concatenated list of the candidate sequences allows producing all candidate sequences
but is inefficient or infeasible when there are many candidate sequences. Therefore, we
aim to find a representation that is more compact than that. We make use of fact that
often, candidate sequences share a similar structure. Ideally, we do not have to iterate all
candidate sequences to construct this representation.
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3.5.1 Using NFAs to represent candidate sequences

Instead of sending a list of sequences, one can use an NFA to represent a set of sequences.
Each accepting path through the NFA corresponds to one sequence of the set. An accepting
path through an NFA starts in an initial state and ends in an accepting state.

For our representation, we construct one NFA to produce the set of frequent candidate
sequences Cp(T, π), which is sent from one input sequence T to a partition Pp. Instead of
sending a list of candidate sequences, we send this NFA and generate the paths through
the NFA at the partition.

Consider the following example. As depicted in Figure 3.2 before, the set of all frequent
candidate sequences generated by input sequence T6 for pattern π1 is

C(T6, π1) = {〈ca1a1b2e〉, 〈ca1a1Be〉, 〈ca1Ab2e〉, 〈ca1ABe〉,
〈cAa1b2e〉, 〈cAa1Be〉, 〈cAAb2e〉, 〈cAABe〉,
〈cb2e〉, 〈cBe〉}.

All candidate sequences in the set have pivot item c, so Cc(T6, π1) = C(T6, π1). An NFA
that produces the set of candidate sequences Cc(T6, π1) is depicted in Figure 3.3. Each
accepting path through this NFA, starting from the initial state and ending in a accepting
state, produces one candidate sequence of the set Cc(T6, π1). We mark an accepting state
by outlining it twice.

Clearly, this is a naive way to represent the candidate sequences. This NFA is not
more compact than a list of the candidate sequences. Sending this NFA to the partition
would actually increase shuffle size, as we would need to encode the structure of the NFA
in addition to the items of the sequences. In the following, we show how we can decrease
the size of the NFA and therefore decrease the amount of necessary communication.

3.5.2 Reducing NFA size

Using an NFA to represent the candidate sequences allows us to merge parts that more than
one candidate sequences contains. For example, all candidate sequences in our sample NFA
start with item c and end with item e. We can put each of these in one shared transition to
reduce the complexity of the NFA. The NFA in Figure 3.4 shows an NFA with one shared
transition for c and e. In the depicted NFA, we also merged all final states into one final
state.

To make the representation as compact as possible, we aim to minimize the number
of states in the NFA. Minimizing the states of an automaton is a common problem, with
a couple of existing algorithms (Moore, 1956; Hopcroft and Ullman, 1979; Brzozowski,
1962). Brzozowski’s algorithm (Brzozowski, 1962) is applicable for both DFAs and NFAs.
Despite its exponential worst-case run time, it is frequently used due to its simplicity,
straightforward implementation, and good performance in practice (Berstel et al., 2010).
Applying Brzozowski’s algorithm to the example NFA in Figure 3.3 results in the NFA
depicted in Figure 3.5. Compared to the naive NFA, the number of states is reduced from
47 to 6.
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Figure 3.3: An NFA that produces the set of candidate sequences Cc(T6, π1). Each accept-
ing path through the NFA produces one candidate sequence.
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transitions merged.

28



0start 1

2 3

4 5
c

a1

A

a1

A
b2

B

e
b2

B

Figure 3.5: An NFA that produces the set of candidate sequences Cc(T6, π1), minimized
version of the NFA from Figure 3.3.

3.5.3 Discussion

An NFA with fewer states can usually be encoded more compactly for communication.
However, one input sequence can potentially produce exponentially many candidate se-
quences. When there are many candidate sequences, generating all candidate sequences
and then minimizing the NFA is inefficient. In the next section, we propose a method to
build compact NFAs more efficiently.

3.6 Constructing compact NFAs efficiently

We now discuss how, given an input sequence and an FST for the pattern expression
of interest, we can efficiently generate one NFA for each partition the input sequence is
relevant for. Intuitively, we construct the NFA directly from the FST transitions that
generate the candidate sequences.

To do this, we simulate the FST to find accepting paths through the FST. During
simulation, we maintain a set of NFAs, one for each pivot item p ∈ P (T, π). An accepting
path can produce multiple candidate sequences, each possibly with a distinct pivot item.
We add each accepting path to the NFAs for the pivot items of the path’s candidate
sequences.

When the simulation of the FST for T is finished, we minimize the NFAs and start
sending them to the corresponding partitions.

3.6.1 Paths through an FST

In our setup, given an input sequence T , we produce the candidate sequences by simulating
the FST. As proposed by Beedkar and Gemulla (2016a), we use compressed FSTs to do
this. A compressed FST can produce multiple output items at each transition. We now
revisit the FST for pattern expression π1 = A([c|d][A↑|B↑]+e). We depict the FST again
in Figure 3.6.

The set of candidate sequences is produced by the accepting paths through the FST.
Each accepting path can produce multiple candidate sequences. Each produced candidate
sequence can have a distinct pivot item. For input sequence T6 = 〈a1ca1a1b2ea1cb2eda1〉
of our running example, there are two accepting paths through the FST. Table 3.1 depicts
these two paths.
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Figure 3.6: FST for pattern expression π1 = A([c|d][A↑|B↑]+e), as seen in Figure 2.2.

Table 3.1: Accepting paths for input sequence T6 through the FST for pattern expression π1

From → to states Transition Input item (pos.) Output item(s)

Path 1 0→ 1 A a1 (1) –
1→ 2 (c) c (2) c

2→ 3 (A↑) a1 (3) a1, A

3→ 3 (A↑) a1 (4) a1, A

3→ 3 (B↑) b2 (5) b2, B

3→ 4 (e) e (6) e

Path 2 0→ 1 A a1 (7) –
1→ 2 (c) c (8) c

2→ 3 (B↑) b2 (9) b2, B

3→ 4 (e) e (10) e

Captured transitions as (c) or (A↑) produce output items. We define a succession of
such sets of output items as an output path.

Definition 9 (Output path) An accepting path through an FST produces a succession
of sets of output items. If the path contains one or more non-empty sets of output items,
we call the succession of non-empty sets of output items an output path. An output path R
of length n is defined as a succession of n non-empty sets of output items. We write

R: O1 — O2 — ... — On.

For example, for path 1 of input sequence T6, we write:

Path R1: {c} — {a1, A} — {a1, A} — {b2, B} — {e}

We omit empty sets of output items as they are not relevant for the generation of candidate
sequences.

3.6.2 Determining the pivot items of a path

One path through the FST can produce multiple candidate sequences. Each candidate
sequence can potentially have a distinct pivot item. The path is relevant for the partitions
corresponding to the pivot items of the candidate sequences. We define the set of pivot
items of a path as follows.
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Definition 10 (Pivot items of a path) Let a path R be given as a sequence of n non-
empty sets of output items O1 — O2 — ... — On. Let R+ be the set of candidate sequences
that is produced by picking one item out of each Oi for i = 1, ..., n and concatenating them
in order as a sequence:

R+ = {〈ω1ω2...ωn〉 | ωi ∈ Oi for i = 1, ..., n}.

We define the set of pivot items of the path R as the set of distinct pivot items of the
candidate sequences it produces:

P (R) = {p(S) | S ∈ R+}.

To ensure correctness, we need to add the path R to the NFA for each pivot item
p ∈ P (R), as it produces candidate sequences that are relevant for these partitions. To
do this, we need to determine the pivot items of the path. Ideally, we do this without
enumerating all candidate sequences produced by the path. For our algorithm, we use a
method that integrates well with the fact that we add the path to the corresponding NFA
for each found pivot item. The method works with the following steps:

1. Determine the maximum item p in the path. This item is the next pivot item.

2. Add the path to the NFA for partition Pp.

3. Remove all occurrences of item p from the path.

4. Check whether any set of output items in the path is empty now. If yes, stop.
Otherwise, continue from step 1.

We discuss how to add a path to an NFA in the following subsection, Section 3.6.3.
Before that, we consider an example to see that this method finds all pivots of the

path. For T3 = 〈a2da1a2b11e〉 and pattern expression π1, there is one output path through
the FST:

R1 : {d} — {a1, A} — {a2, A} — {b1, B} — {e}.

This path creates eight frequent candidate sequences, which can be seen in Figure 3.2.
The pivot items of these candidate sequences are a2 and d. We now run the algorithm as
described above on this output path. According to the f-list, the maximum item in this
path is a2 (step 1). So we add the path to the NFA for partition Pa2 (step 2). We then
remove all occurrences of a2 from the path (step 3) and obtain a modified path:

R′1 : {d} — {a1, A} — {A} — {b1, B} — {e}.

None of the sets of output items in the path are empty (step 4), so we continue in step 1.
According to the f-list, the maximum item in R′1 is d (step 1). So we add R′1 to the NFAs
for partition Pd (step 2) and remove d (step 3):

R′′1 : {} — {a1, A} — {A} — {b1, B} — {e}.

Now the first set of output items is empty, so we stop in step 4. We correctly added the
path to the NFAs for pivot items a2 and d.
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This method integrates nicely with adding the path to the corresponding pivot NFA. It
is unnecessary to include any items in the NFA that are larger than the pivot item: when
we add a path to the NFA for partition Pp, we do not want any items ω > p in the path,
as any candidate sequence that contains ω is not a candidate sequence for partition Pp.
In our example, when we add the path to the NFA for Pd, we already removed a2 from
the path.

We now give some intuition to see why this method finds exactly the set of pivot items
for every given path. In a path R, an item ω from output item set Oi is a pivot item if
there is at least one item smaller or equal ω in every other set. When we pick exactly these
items from the other sets and ω from Oi, ω is the maximum item in the sequence and
therefore the pivot item. If there are such smaller or equal items in every other set, the
proposed method picks ω as pivot item before any other set runs empty. In the opposite
case, if an item ω is not a pivot item, there is at least one other set that contains items
that are all larger than ω. This set runs empty and causes the method to stop before ω
is picked.

We investigated one other method for determining the pivot items of a path. It merges
the sets of output items of a path according to a specific rule. We briefly describe this
method in Appendix A. We picked the method described above because it integrates well
with adding the path to the NFAs. However, we estimate that the method described in
Appendix A can be more efficient if one does not construct NFAs. For example, that is
the case when we send input sequences to the partitions instead of candidate sequences.

3.6.3 Constructing one NFA for each partition

While simulating the FST on input sequence T to find accepting paths, we maintain a set
of NFAs: one NFA for each pivot item p ∈ P (T, π). We add a path R to the NFAs for all
the pivot items P (R) of the path. If an NFA for a pivot item p ∈ P (R) does not exist yet,
we create it.

To add a path R to an NFA, we use a straightforward process for building a tree from
a set of strings, or, in our case, sequences. The sets of output items of the path become
the labels of edges in the tree:

1. Initialize q to be the initial state of the NFA and o to be the first set of output items
of path R.

2. Check whether q has an outgoing transition with label o.

• If it does, follow this transition and set q to the target state of this transition.

• If it does not, add an outgoing transition to q with the label o, pointing to a
newly created target state q′. Then set q ← q′.

3. Check whether there is a next set of output items in the path R.

• If there is one, set o to this next set of output items and continue with step 2.

• Otherwise, mark the current state q in the NFA as final and stop.
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With this method, we build a tree for each partition. If we treat a set of output items
as a distinct label for the automata, this is a DFA, as we make sure that no state has an
outgoing transition twice.

If we do this for T6 of our running example, we end up with one NFA for partition Pc.
No other NFA is created. We add two paths to the NFA and arrive at the tree depicted in
Figure 3.7.

0start 1

2 3 4 5

6 7

{c}
{a1, A} {a1, A} {b2, B} {e}

{b2, B}
{e}

Figure 3.7: An NFA that produces the set of candidate sequences Cc(T6, π1), constructed
from output paths through the FST.

This NFA is not minimal. We now run an adaptation of Brzozowski’s algorithm starting
from the final states of the automaton backward to join paths in the NFA with a shared
suffix. In this example, the two paths share the suffix {b2, B} — {e}. In this case, we
merge the {e} part of the shared suffix. Figure 3.8 presents the reduced NFA, which is
also a DFA.

0start 1

2 3

4 5
{c}

{a1, A} {a1, A} {b2, B}

{e}

{b2, B}

Figure 3.8: An NFA that produces the set of candidate sequences Cc(T6, π1), constructed
from output paths through the FST and minimized.

3.6.4 Discussion

Building an NFA directly from FST transitions is more efficient than generating all can-
didate sequences if the number of accepting paths through the FST is smaller than the
number of candidate sequences. This is the case if the paths generate multiple candidate
sequences – which they do if transitions in the paths generate multiple output items. A
transition can produce multiple output items if an item can generalize to other items. So
this method is especially efficient in the presence of hierarchies.

However, the method can be inefficient if there are exponentially many paths through
the FST, which is the case for some pattern expressions. For these cases, our method
adds many paths to the NFAs and minimizes the resulting NFA. For such pattern expres-
sions, other approaches might be more applicable – for example, sending the original input
sequence to the partition.

We explored an alternative approach to building the NFAs. In this approach, while
simulating the FST, we construct only one NFA for all partitions. We add each path only
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to this NFA. After the simulation, for each pivot item, we determine the parts of this NFA
that are relevant for that pivot item and prepare that part for communication. In our
implementation, the presented method was more efficient.

3.7 Encoding NFAs for communication

Once we finish constructing an NFA, we need to send it to the correct partition. In most
of the cases, an input sequence and its relevant partitions are located at different nodes of
the cluster. Therefore, we need to communicate the NFA over the network. To do this, it
is necessary to encode the NFA in a way we can send over the network. This process is
typically called serialization.

In distributed systems, sending data between the nodes via network is often slow com-
pared to local computation. Our goal is to find a compact serialization format. It should
also be efficient to write the NFA to this format and to reconstruct it later at the partition.

In this section, we first discuss how to represent an NFA for communication. Then we
present and discuss two different strategies to enumerate the states and transitions of the
NFA.

3.7.1 Encoding an NFA as integer array

When encoding an NFA, we encode two things: the set of output items for each transition
and the structure of the NFA: from which to which state a transition goes and which states
are accepting states.

In our implementation, we represent the items of the vocabulary as integers, because
integers are much more compact to store than strings, for example. Therefore, it is natural
to represent one NFA as an array of integers.

To achieve a more compact representation, we make use of variable-length encoding
for these integers. In fixed-length integer encoding, each integer is typically encoded using
four bytes. Variable-length encoding represents smaller integers with fewer bytes. We make
sure that more frequent items are identified by smaller integers, which are then written
more compactly. In our implementation, we use Apache Hadoop’s variable-length integer
encoding1. This variant of variable-length encoding represents integers −112 <= i <= 127

with one byte. Previous algorithms for distributed FSM have also used this approach
(Beedkar et al., 2015; Beedkar and Gemulla, 2015).

We now consider the two strategies to enumerate the transitions of an NFA.

3.7.2 Serialization by state

First, we consider serialization by state. This works as follows. We run through each state
of the NFA. For each state, we write information about each outgoing transition of the
state. In particular, for each outgoing transition, we first write the set of output items of
the transition. We then write the target state, to which the transition leads. After writing
information for all outgoing transitions, we mark the end of the information about this

1https://hadoop.apache.org/docs/r2.7.3/api/org/apache/hadoop/io/WritableUtils.html#
writeVInt(java.io.DataOutput,int)
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state. In this marker, we include whether the state is accepting or not: the final end marker
EF signals that the state is accepting, the regular end marker E signals that it is not.

Consider the compact NFA for Cc(T6, π), which we depicted in Figure 3.8. Figure 3.9
presents the array that holds the serialization by state for this NFA. For easier readability,
we depict output items by their letter instead of an integer identifier. State 0 is serialized
first. It has one outgoing transition, which leads to state 1 with output item c. We write
the output item at index 0 of the integer array and the target state at index 1. As state 0

is not a final state, we use a regular end marker E , which we write at index 2.
The next state, state 1, has two outgoing transitions, both with two output items. The

first outgoing transition leads to state 2 with the output items a1 and A. This transition
is serialized at indexes 3 to 5. The other outgoing transition leads to state 4 with output
items b2 and B. The transition is written at indexes 6 to 8. The final marker is written
at index 9. We proceed accordingly for states 2, 3, 4, and 5. State 5 has no outgoing
transitions, so we only note the end marker for the state, which is a final end marker EF ,
as state 5 is an accepting state.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

c 1 E a1 A 2 b2 B 4 E a1 A 3 E b2 B 4 E e 5 E EF

state 0 state 1 state 2 state 3 state 4 state 5

Figure 3.9: An array that holds the serialization by state for the NFA depicted in Figure 3.8.
Items are represented by letters, not their integer identifiers.

To distinguish between the integers for output items, target states, and end markers,
we can proceed as follows: output items are encoded as positive integers, the regular end
marker is 0, the final end marker is -1, and target states are encoded as a negative integer
starting from -2.

Serializing an NFA by state is a good strategy when the states of the NFA have many
outgoing transitions. It is not optimal if there are many NFAs which have states with few
outgoing transitions, such as our example NFA. For these simpler NFAs, serialization by
state encodes much overhead for the structure of the NFA.

Imagine for example an NFA that encodes only one candidate sequence 〈dBe〉, such as
the NFA that encodes Cd(T4, π1). This NFA has only one outgoing transition per state
and only one output item per transition. Such an NFA is depicted in Figure 3.10. Sending
just the candidate sequence would require three integers, one for each of the three items
in the candidate sequence. In contrast, sending the NFA includes additional information:
in addition to the output items, the proposed serialization writes the target state for each
transition and an end marker for each state, resulting in a total of ten integers. Compared
to sending the candidate sequence alone, this is a considerable overhead.

In our experiments, we observed that, for many pattern expressions, the states in the
sent NFAs tend to have few outgoing transitions, especially for the partitions of frequent
items. So we implemented another way to serialize an NFA.
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{d} {B} {e}

Figure 3.10: An NFA that produces the candidate sequence 〈dBe〉.

3.7.3 Serialization by path

Serialization by path allows having a compact representation of simple NFAs with few
outgoing transitions per state. We can also use it to encode more complex NFAs.

In serialization by path, instead of enumerating state by state, we serialize path by
path. Within a path, we do not explicitly encode the target states. We assume that a
transition starts in the state the previous transition leads to. For all following paths, we
only serialize new parts and refer to the states of previously written paths. For an NFA
with a limited number of paths, this scheme leads to a more compact serialization.

For example, there are two paths through the NFA depicted in Figure 3.8:

R1 :{c} — {a1, A} — {a1, A} — {b2, B} — {e}
R2 :{c} — {b2, B} — {e}

In the NFA, the two paths share transition {c} at the beginning and transition {e} at the
end. We now first look at how we can write paths without explicitly noting target states.
We then consider how we can serialize the output items of a transition.

First, we serialize pathR1. We do this by serializing information about all its transitions
in order. We keep an identifier for each state that we pass but do not serialize explicitly.
We call these states implicit states. For example, we start with transition {c} in an implicit
start state s0 and reach an implicit state s1 with this transition. With transition {a1, A},
we start in this implicit state s1 and reach a new implicit state s2. With the next {a1, A},
we reach implicit state s3, with {b2, B} we reach implicit state s4, and with {e} we reach
implicit state s5. If a state, which we pass implicitly, is an accepting state in the NFA,
such as state s5, so we note a final marker F after we serialize the transition that leads to
this state, in this case after {e}. In this example, the implicit state numbers are identical
to the state numbers in Figure 3.8, but this is not necessarily the case.

Next, we serialize path R2. To do this, we serialize only the transitions of R2 that
we have not serialized with R1 yet. That means, we only serialize transition {b2, B}. In
the NFA, the transition leads from state 1 to state 4. These states correspond to implicit
states s1 and s4. So we write that we start in implicit state s1, write information about
this transition and then write that it leads to implicit state s4. If there was more than one
new transition in path R2, we would write these transitions after each other as we did for
the transitions in path R1.

We now consider how to encode the output items of a transition. One transition can
contain one or more output items. Serializing a list of many output items is not compact.
To remedy this, if there is more than one output item, we make use of the item expression
that produced this set of output items. Instead of writing a list of items in the set, we
write an integer identifier for this item expression and the input item that matched this
item expression. When deserializing the NFA, we can reproduce the set of output items
from this information. For sets of output items that contain more than two items, this
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c (A↑) a1 (A↑) a1 (B↑) b2 e F s1 (B↑) b1 s4

0 1 2 3 4 5implicit states:

path 1 path 2

(a) Array of symbols

0 1 2 3 4 5 6 7 8 9 10 11 12

10 -3 4 -3 4 -4 6 3 0 -7 -4 5 -10

0 1 2 3 4 5implicit states:

path 1 path 2

(b) Array of integers

Figure 3.11: Arrays that hold the serialization by path for the NFA depicted in Figure 3.8.

encoding requires fewer integers than serializing all items. If there is only one output item
in the set, we write this output item.

For example, the set of output items {a1, A} is produced by a transition with item
expression (A↑), reading input item a1. Instead of writing the two output items, we write
an integer identifier for item expression (A↑) and input item a1.

We now put all of this together in an example. We depict the serialization by path of
the NFA for Cc(T6, π1) from Figure 3.8 in Figure 3.11(a). The first path R1 is serialized
at indexes 0 to 8. The implicit state reached with each transition is indicated above the
array. For transitions with one output item, as {c} for example, we write the output
item directly. For sets with more than one output item, such as {a1, A}, we write item
expression identifier and input item. We add a final marker at index 8 for the state reached
with transition {e}. Path R2 is serialized at indexes 9 to 12. We write the implicit start
state s1 at index 9, the item expression and input item at indexes 10 and 11, and the
implicit target state s4 at index 12.

To encode this representation as an integer array, we carefully partition the range of
integers. We use positive integers to encode output items and input items. We use the 0 to
encode the final marker F . We use negative integers for both item expression identifiers and
states. We give each distinct item expression of an FST an integer identifier. Immediately
after writing an item expression identifier, we write the input item that matched the item
expression.

To distinguish between identifiers for states and identifiers for item expressions, we
additionally partition the range of negative integers. Let nex be the number of distinct
item expressions and nst the number of states in the NFA. Then the nex largest negative
integers −nex ≤ i ≤ −1 are used for item expression identifiers, the next nst integers
(−nex − nst) ≤ i ≤ (−nex − 1) are used for start and target states. For example, the
first implicit state s0 is represented by integer −nex − 1. We partition the range this way
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because the number of distinct item expressions in the FST is known when deserializing
the NFA, whereas the number of states in the NFA is unclear, unless we encode it explicitly
in the serialization. In our experiments, nex +nst was usually clearly lower than 112, such
that both state identifiers and item expression identifiers are usually encoded using only
one byte.

When deserializing an NFA, we can distinguish between output items and input items,
which we both encode as positive integers, by context. If we read an integer −nex ≤ i ≤ −1

that represents an item expression identifier, we know the next item is the input item for
this item expression. Otherwise, positive integers are output items.

Figure 3.12 depicts the encoding scheme for our running example, the NFA for Cc(T6, π1),
with nex = 5 distinct item expressions used in the FST and nst = 5 implicitly serialized
states. To encode output and input items, we use their position in the f-list. That is, the
most frequent item A is represented by a 1, the second most frequent item B by a 2, and
so on. Figure 3.11(b) gives the serialization by path for the example NFA encoded using
this scheme.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

implicit states item expressions items

integers symbols

s4 s3 s2 s1 s0 (e) (B↑) (A↑) (c) (d) F A B e a1 b1 b2 d a2 b12 c b11

Figure 3.12: Encoding scheme for the running example with nex = 5 and nst = 5

3.7.4 Discussion

We ensure that the representation by path is canonical. That is, two identical NFAs are
guaranteed to be represented by the same integer array. We achieve this by iterating paths
in a fixed order. This way, depth-first search traverses the NFA in the same order for two
identical NFAs. A canonical representation is important for aggregating multiple identical
NFA by count.

Serialization by path is more compact than serialization by state for an NFA with a
limited number of paths through the NFA. If the NFA is more complex, with many paths
and therefore, many outgoing transitions per state, serialization by path can be larger than
serializing by state. In our experiments, serialization by path has consistently led to lower
communication between the nodes. The reason for this is that even when there are some
more complex NFAs for partitions of larger pivot items, there are usually many relatively
simple NFAs for partitions of smaller pivot items. For these NFAs, serialization by path
can be more compact.

For Cc(T6, π1), serialization by states requires 22 integers, serialization by path requires
13. For our example of an NFA with only one path, as depicted in Figure 3.10, the difference
is larger. In serialization by state, we need ten integers, by path, we need only four, one
for each output item and one for the final marker at the end. In our implementation, we
leave out final markers at the end of the first path if there is only one path, bringing the
number of necessary integers down to three.
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(a) NFA N1 for partition Pc, generating Cc(T1, π1)
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{e}
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(b) NFA N2 for partition Pc, generating Cc(T6, π1)

Figure 3.13: Partition Pc in item-based partitioning for pattern expression π1, consisting
of two input NFAs, one each from input sequences T1 and T6.

3.8 Local mining

We now turn to local mining at the partitions. At each partition, we are given a list of
NFAs Pp = {N1, N2, ..., N|Pp|} that contribute candidate sequences with pivot item p. Our
goal is to find all frequent sequences with pivot item p and output each frequent sequence
with its frequency.

To do this, we adapt the pattern-growth approach of PrefixSpan (Pei et al., 2001).
Our approach builds on DESQ-DFS (Beedkar and Gemulla, 2016a), which we discuss in
Section 2.3.3, but differs in two major ways. First, we work on NFAs that contain candidate
sequences. Therefore, there is no need to simulate the FST as we run local mining. Second,
we output only sequences for a specific pivot item p.

3.8.1 Pattern-growth with candidate sequence NFAs

Each of the NFAs for partition Pp stems from one input sequence T . It encodes the set
of frequent candidate sequences Cp(T, π) of that input sequence. A candidate sequence S
at partition Pp is frequent if it occurs in σ or more of these sets, or: if σ or more NFAs
generate S.

In this section, we consider example partition Pc. It consists of two NFAs, one from
input sequence T1 and one from T6. The NFAs are depicted in Figure 3.13. We refer to
the NFAs as N1 and N2. We further set minimum support σ = 2.

An NFA N generates a sequence S = 〈ω1ω2...ωn〉 if there is a path through the NFA
that produces S. Formally, there is such a path if there is a succession of transitions
u1u2...un in N such that: transition ui outputs item ωi for 1 ≤ i ≤ n, transition u1

originates in the initial state of N , and ui originates in the target state of transition ui−1
for 2 ≤ i ≤ n. If un ends in an accepting state, we call the path an accepting path. To
decide whether a sequence is a frequent sequence or not, we define the final support of a
sequence at a partition.
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Figure 3.14: Prefix tree for partition Pc. Prefixes with support ≥ σ are marked with an
outline. Prefixes with final support ≥ σ are marked with a double drawn outline.

Definition 11 (Final support at a partition) We define the final support of a sequence
S at partition Pp as the set of NFAs from Pp that have an accepting path for S:

FinalSupPp(S) = {N ∈ Pp | there is an accepting path in N that produces S}.

A candidate sequence S is a frequent sequence at partition Pp if |FinalSupPp(S)| ≥ σ.
In pattern-growth, we grow a prefix by appending items and aim to stop expanding a prefix
when we are sure that it cannot lead to a frequent sequence. To do this, we further define
prefix support as the set of NFAs that support a prefix from any path, not just accepting
paths.

Definition 12 (Prefix support at a partition) We define the support of a prefix S at
partition Pp as the set of NFAs from Pp that have a path that produces S:

SupPp(S) = {N ∈ Pp | there is a path in N that produces S}.

We say that a prefix S is frequent if |SupPp(S)| ≥ σ and infrequent otherwise. In
our example partition Pc, prefix 〈c〉, for example, has prefix support from both NFAs:
SupPc(〈c〉) = {N1, N2}. So for σ = 2, it is a frequent prefix. For σ = 2, examples for
infrequent prefixes are 〈ca1〉, 〈db2〉, and 〈ca1B〉.

We now discuss how the local mining process works. The algorithm grows a prefix S

item by item. It starts with an empty prefix S = ε and recursively appends single items ω
to the prefix. When it finds a prefix to be infrequent, prefix expansion is stopped for this
prefix, as any prefix S ω produced from an infrequent prefix S will be infrequent.

For each prefix, we maintain an inverted index S.db. The inverted index stores which
NFA in Pp can produce the prefix. To do this, it stores tuples (N, q). One tuple for each
NFA N that produces the prefix and the state q, in which the NFA is after producing
prefix S. We call S.db an inverted index because we store a list of supporting NFAs for
each prefix and not a list of supported prefixes for each NFA.

The prefixes that are generated this way can be arranged in a prefix tree, where each
prefix Sω is a child of the prefix S. Figure 3.14 shows the prefix tree for our example.
Frequent prefixes, that is, prefixes S with |SupPc(S)| ≥ 2, are outlined. Frequent sequences,
that is, prefixes S that have |FinalSupPc(S)| ≥ 2 are depicted with a double outline. At
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Table 3.2: Inverted indexes for the prefixes in the prefix tree for partition c

Prefix Inverted index Prefix support count Final support count

∅ (N1, 0), (N2, 0) 2 0
〈c〉 (N1, 1), (N2, 1) 2 0
〈ca1〉 (N2, 2) 1 0
〈cA〉 (N2, 2) 1 0
〈cb12〉 (N1, 2) 1 0
〈cb1〉 (N1, 2) 1 0
〈cb2〉 (N1, 4) 1 0
〈cB〉 (N1, 2), (N2, 4) 2 0
〈cBe〉 (N1, 3), (N2, 5) 2 2

partition Pc, there is one frequent sequence: 〈cBe〉, with support |FinalSupPc(〈cBe〉)| = 2.
Prefix 〈c〉 is expanded to many prefixes, for example, to 〈ca1〉. However, most of these
children prefixes are infrequent, so they are not expanded further. Only 〈cB〉 is frequent,
so we expand it.

Table 3.2 depicts the inverted indexes for the prefixes in the prefix tree of our example.
Along with the inverted index, we also depict the prefix support count |SupPp(S)| and the
final support count |FinalSupPp(S)| of each prefix S.

Algorithm 1 depicts the algorithm more formally. The empty prefix has support from
the initial states 0 of all NFAs in Pp. This is set in line 2. Expansion of a prefix S is done
by the function expand(S). To expand a prefix S, we iterate through the NFAs stored in
the inverted index S.db (line 11). For each NFA in the list, we go to stored state q and
follow the outgoing transitions of the state. Each outgoing transition produces a set of
output items ω and leads to a state q′. For each tuple (ω, q′) (line 12), we form a new child
prefix S ω and update the data structures for the child prefix (lines 13 to 17).

First, we add tuple (N, q′) to the inverted index of prefix (Sω) (line 14), because N
can produce prefix (Sω) in state q′. For each prefix, we maintain two additional structures
(lines 15 and 17): support and finalSupport, corresponding to prefix support and final
support. We use the support to decide whether to expand a prefix (line 19) and final
support to decide whether to output a prefix as frequent sequence (line 8).

As mentioned, we ensure to output only sequences with pivot item p at partition Pp.
As we send only pivot-relevant candidate sequences to the partition, most of the generated
sequences have pivot p. In particular, the NFA does not produce any items ω > p at
partition Pp as the pivot item of that sequence would be ω and not p. There are some
cases though in which it is possible that we generate sequences S with p(S) < p. Consider
for example an NFA with a path {b1, B} — {A} — {b1, B} for pivot item b1. In pattern-
growth, one of the prefixes we will expand (if frequent) is 〈BAB〉, but p(〈BAB〉) = B. We
must not output this sequence at partition b1, even if we find it to be frequent. Therefore,
the filter step in line 8 is included.
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Algorithm 1: Mine frequent sequences for partition Pp
Data: List of NFAs Pp, pivot item p, minimum support σ
Result: Frequent sequences with pivot item p

1 S ← ε

2 S.db ← {(N1, 0), (N2, 0), ..., (N|Pp|, 0)}
3 S.support ← {N | N ∈ Pp}
4 S.finalSupport ← {}
5 expand(S)
6

7 Function expand(S)
8 if |S.finalSupport| ≥ σ and p(S) = p then
9 output (S, |S.finalSupport|) as a frequent sequence

10 S.children ← {}
11 foreach (N,q) ∈ S.db do
12 foreach (ω, q′) ∈ outgoing(N,q) do
13 S.children ← S.children ∪ ω
14 (Sω).db ← (Sω).db ∪ (N, q′)
15 (Sω).support ← (Sω).support ∪ N // initially empty
16 if q′ is a final state in N then
17 (Sω).finalSupport ← (Sω).finalSupport ∪ N // initially empty

18 foreach ω ∈ S.children do
19 if |(Sω).support| ≥ σ then
20 expand(Sω)

21

22 Function outgoing(N, q)
// returns a list of (output item, target state) pairs for all outgoing items leaving state q of

NFA N

3.8.2 NFA representation for local mining

Before the local mining process, we read the variable-length encoded NFAs, convert the
path-wise representation to a state-wise representation, and keep the state-wise representa-
tion in memory as integer arrays during the mining process. This has two main advantages.
First, the serialized format has a low memory footprint compared to an approach in which
we read in the NFA and create an object structure. Second, we can efficiently implement
the state pointers in the inverted index as the array index of the starting position of the
state in the integer array.

Although serialization by path was the more concise representation for communication
of the NFAs in our experiments, it is not a suitable format for the local mining process.
Recall that we store tuples (N, q), pointing to a specific state q of NFA N . Later, in a
subsequent expand step, we visit this state q and aim to quickly generate the output items
of all outgoing transitions along with their target states q′. If the state q has more than one
outgoing transition, serializing by path has the consequence that the outgoing transitions
of the state are kept in multiple different locations of the array. Consider the serialization
in Figure 3.11(a). The NFA can be seen in Figure 3.8. The two outgoing transitions of
state 1 can be found at indices 1 and 10. Moreover, without reading the entire serialization,
there is no straightforward way to determine the other index when knowing one of them.
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To remedy this, one could either store multiple indices for each state or read in the
NFA completely before the mining process and hold either an object-representation or
additional data structures for the integer array in memory during the mining. However,
as there might be many NFAs at one partition, this can be memory consuming. We found
that it is more efficient to convert the NFA to a state-wise representation when deserializing
the NFA.

The representation by state allows implementing state-pointers efficiently. Consider the
representation by state depicted in Figure 3.9 again. The information about all outgoing
transitions, their target states, and the finality of the state are stored in one common place
in the array. We can easily retrieve all this information by storing one pointer to the start
index for a state q. For state 0 of the example NFA N2, we store a pointer to index 0, for
state 1 to index 3, for state 2 to index 10, for state 3 to index 14, for state 4 to index 18,
and for state 5 to index 21.

It might seem counterintuitive to serialize NFAs by path for communication and then
convert them to a representation by state. However, one has to consider that writing,
reading, and sending data between nodes often is a bottleneck in distributed algorithms.
In our experiments, sending the path-wise representation and converting it to a state-
wise representation proved to be faster than sending the state-wise representation in the
first place.

3.8.3 Discussion

There is further work possible to improve the local mining process. As mentioned, for some
paths through the NFA, sequences are produced that are not relevant for the partition.
For some pattern expressions, this can result in considerable additional computation. For
these pattern expressions, it is desirable to add methods to prevent the generation of
these prefixes.

We use an adapted version of pattern-growth in this work, but other methods for local
mining could be employed. In essence, our distributed setup reduces the problem of local
mining to finding all σ-frequent common paths in a given set of NFAs, which is a relatively
general problem.

In our implementation, we aggregate identical NFAs by count both before communica-
tion to the partitions and locally at the partition before the mining process starts. That
means, if an NFA N1 arrives twice at a partition, we put it once in the list Pp with a
weight of two. We adapt the algorithm for local mining accordingly by taking the weight
of the NFAs into account when calculating the size of sets S.support and S.finalSupport.
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Chapter 4

Experimental evaluation

In our evaluation, we proceed as follows. After describing our experimental setup, we com-
pare our algorithm, which we call DDIN 1, to baseline algorithms for FSM with declarative
subsequence constraints and assess the effect of minimizing NFAs and of aggregating NFAs
by count. We then examine performance against a state-of-the-art algorithm for FSM with
traditional subsequence constraints and further investigate the scalability of the proposed
algorithm. Our main findings can be summarized as follows.

• For pattern expressions that generate many candidate sequences, DDIN is up to 50
times faster than the distributed version of DESQ-COUNT.

• For pattern expressions that generate only few candidate sequences, DDIN is not
slower than the distributed version of DESQ-COUNT.

• For FSM with hierarchies and traditional subsequence constraints, the proposed al-
gorithm performs competitively to LASH, a state-of-the-art algorithm specialized for
this problem. For some parameter settings, it outperforms LASH.

• DDIN is not efficient for some pattern expressions that produce an exponential num-
ber of candidate sequences.

• DDIN exhibits linear scalability and can mine large datasets, which cannot be mined
efficiently using sequential algorithms.

4.1 Experimental setup

4.1.1 Implementation

We implemented DDIN based on the source code of the sequential DESQ-COUNT and
DESQ-DFS implementation by Beedkar and Gemulla (2016a), which is available online2.
Since the publication in 2016, the authors have developed the code further, both in terms
of performance and usability. Our implementation is in Java, using Java Development Kit
1.8. High-level code is written in Scala, using Scala version 2.11.8. The source code is
available online3.

1Distributed Desq with Item-based partitioning and Nfa shuffle
2http://dws.informatik.uni-mannheim.de/en/resources/software/desq/
3https://github.com/alexrenz/ddin
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We represent items using integer identifiers based on the order established by the gener-
alized f-list, such that more frequent items are represented by smaller integers, which take
less space in variable-length encoding. We store the mapping between frequency-based
identifiers and original identifiers in a dictionary. This dictionary also holds the parent
items for each item, as defined by the item hierarchy. We send this dictionary to every
node of the cluster at the start of the algorithm.

In DDIN, for both communication between partitions and local mining, we aggregate
the NFAs that encode the candidate sequences by count. This means that, if two input
sequences in a group of input sequences produce the same NFA for one pivot, we transfer
this NFA once with a count of 2. At the mine partitions, the two NFAs are aggregated
again. For example, if one NFA arrives with counts 2 and 3 from two different map
partitions, we aggregate it so we have this NFA once with a count of 5. To do this, we use
Apache Spark’s combineByKey function.

4.1.2 Cluster setup

We run our experiments on a local cluster. The cluster consists of nine Dell PowerEdge
R720 computers. One of the machines is configured as a master node for Hadoop, the other
eight are worker nodes. Each worker node is equipped with two Intel Xeon E5-2640 v2
8-core CPUs and 128 GB of main memory. For data storage, each worker node is equipped
with four 2 TB NL-SAS 7200 RPM hard disks. The driver node is equipped with one
of the CPUs instead of two, 64 GB of main memory and is not used as data storage for
Hadoop. The nodes are connected with 10 GBit Ethernet.

The cluster nodes run CentOS Linux, release 7.3.1611 with Linux Kernel 3.10.0. We
are running version 2.5.0 of Apache Hadoop and version 2.0.1 of Apache Spark.

For Hadoop, we run one node as a master node and the other eight machines as nodes
for data storage and computation. For Spark, no master node is required. We run Spark
on the eight worker nodes.

For our experiments, we store data in the distributed file system HDFS on the cluster
nodes. We submit applications to the Hadoop resource manager YARN in cluster mode.
The algorithm reads the input sequences from HDFS, runs all computations, and stores
found frequent sequences to HDFS again. We set the HDFS replication factor to three,
meaning, each part of the data is stored on three nodes. Whenever possible, YARN
schedules tasks at the nodes that hold the input data for the task.

As described, each worker node has 16 CPU cores. Each of these CPU cores supports
two threads. Therefore, YARN counts 32 virtual CPU cores per worker node. When
running an application in Spark, one can specify the number of executors for a job and
the resources for one executor. Spark creates the specified number of executors, and each
executor creates a Java Virtual Machine with the specified resources and runs as many tasks
in parallel as it was assigned CPU cores. Unless otherwise specified, we run our experiments
using 8 executors, each equipped with 8 virtual CPU cores and 64 GB of memory, that is,
8 GB per task. YARN adds 10% memory overhead, so the YARN containers effectively
run with 70.4 GB memory.

Unless otherwise noted, we partition the input data into 256 input splits, which creates
256 execution partitions in Apache Spark. We do not change the number of execution
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Table 4.1: Characteristics of datasets and hierarchies

NYT AMZN-S AMZN-L CW50

Average sequence length 22.8 4.5 3.9 19.0
Maximum sequence length 21 000 25 630 44 557 20 993
Total sequences 49 593 066 6 643 666 21 176 522 567 032 222
Total items 1 129 536 263 29 667 966 82 677 131 10 774 007 413
Unique items 8 148 932 2 374 096 9 874 211 22 642 566

Hierarchy items 9 874 089 2 385 775 10 557 785 22 642 566
Leaf items 8 148 932 2 374 096 10 528 545 22 642 566
Root items 31 2 623 1 173 798 22 642 566
Average number of ancestors 2.8 3.6 4.6 1
Maximum number of ancestors 3 8 104 1

partitions throughout the job. So in both the map and the mine stage, we work with 256
Apache Spark partitions. Note that these Spark partitions are not to be confused with the
partitions Pp we introduced in Section 3.3. In the map stage, one Spark partition processes
many input sequences. In the mine stage, one Spark partition typically processes many
partitions Pp.

Throughout our experiments, we use the Garbage First Garbage Collector on all nodes
(Java option -XX:+UseG1GC). We also use an increased stack size of 8 MB (Java option
-Xss8m), as we use recursion to simulate FSTs and for some pattern expressions, regular
stack size does not suffice to simulate some FSTs on some input sequences.

4.1.3 Measures

We report run times as measured by Apache Spark. Apache Spark reports both run time
for the map stage and the mine stage. We either report the total run time as the sum of
these two stages or both of them separately. The time required for the shuffle is included
in these two stages.

We report the number of bytes transferred between the map stage and the mine stage
as shuffle size. To measure this, we use Apache Spark’s shuffleWriteBytes metric for the
map stage.

All measurements we report are the mean of three independent runs that were run with
no other applications running on the cluster.

4.1.4 Data

We use four real-world datasets for our experiments. Table 4.1 depicts statistics about
these datasets and the hierarchies we use with the datasets. In the following, we give a
brief description of the these.

New York Times corpus dataset. The New York Times Annotated Corpus, released
in 2008 by the Linguistic Data Consortium4, consists of more than 1.8 million articles
published by the New York Times between 1987 and 2007.

4https://catalog.ldc.upenn.edu/ldc2008t19
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We interpret sentences in the corpus as sequences for our sequence database. Each
word is an item. This results in a sequence database with 49.6 million sequences. We refer
to this dataset as NYT.

We use a hierarchy of annotations from the Stanford CoreNLP tools5. Named entities
generalize to their type (PERSON, ORGANIZATION, LOCATION, MISC) and then to
ENTITY. For example, Clinton ⇒ PERSON ⇒ ENTITY.

Other words generalize to their lemma and then their part-of-speech tag. For example,
winning ⇒ win ⇒ VB. This hierarchy is taken from Beedkar and Gemulla (2016a).

An example sequence from the NYT corpus is:

TNYT = 〈 The increase was attributed to a recommendation

by Goldman,Sachs&Company . 〉.

Amazon reviews dataset. We use two datasets that contain reviews of Amazon
users. The original Amazon review dataset (McAuley and Leskovec, 2013) consists of 24.7
million product reviews by 6.6 million Amazon users between 1995 and 2013. We refer to
this dataset as AMZN-S. We also use a larger version of the dataset (McAuley et al., 2015),
to which we refer as AMZN-L. It contains 82.7 million reviews of 21.2 million Amazon users
between 1996 and 2014.

Both datasets have an inherent hierarchy: the Amazon product hierarchy. An item
generalizes to a category of items. This category can generalize to a broader category, which
might then generalize to a department. For example, a specific book can generalize to the
category Fiction books, which in turn generalizes to the department Books. Between the
publication of the two datasets, both the Amazon product catalog and product hierarchy
became more fine-grained, which can be seen in Table 4.1: both the number of unique
items and the number of items in the hierarchy grew.

For this dataset, we interpret the succession of reviews by one user as a sequence in
our sequence database. An example sequence from the Amazon dataset is:

TAMZN-S = 〈0307264556 B000NY133G B0002Q1CFO B000FIS5U4 B00004R6JY

B00004S5SK B00004ROBR B00004VY19 B000002OLA〉.

Each of the items in this sequence is an Amazon product identifier. An Amazon client
reviewed these products over a period of time.

Using the Amazon product catalog one can map each product identifier to its corre-
sponding product. First, this person reviewed two books, I Feel Bad about My Neck by
Nora Ephron and The Secret by Rhonda Byrne. The books stem from the categories Hu-
mor and Psychology & Counseling, respectively. The person later went on to review a knee
strap and a polishing cloth. The last five reviews are all for products related to the movie
Far and Away with Nicole Kidman and Tom Cruise. The person reviewed two VHS tapes,
two DVDs, and an audio cassette containing the soundtrack of the movie.

ClueWeb. The fourth dataset is a 50% sample of the ClueWeb09-T09B subset of
ClueWeb6. Our subset contains the text of 25 million English web pages. Beedkar et al.
(2015) split the text into sentences and removed boilerplate parts. Each sentence in the

5http://stanfordnlp.github.io/CoreNLP/
6http://lemurproject.org/clueweb09/
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text is then treated as one input sequence. Unfortunately, we were able to obtain only a
50% sample of this dataset from the authors. We use no hierarchy for this dataset. We
refer to this dataset as CW50.

4.1.5 Pattern expressions

We use a set of pattern expressions for our experiments. We include both constraints that
cannot be expressed using traditional constraints and pattern expressions that model tra-
ditional subsequence constraints. Table 4.3 depicts the pattern expressions we use along
with some example frequent sequences from corresponding datasets. The pattern expres-
sions are adapted from Beedkar and Gemulla (2016a). Some pattern expressions make
use of quantification, such as ?, {3}, and {1, 4}. These quantifications work as they do in
regular expressions.

Table 4.2 reports statistics about the matched sequences and produced frequent can-
didate sequences for some pattern expressions. As it depends on σ whether a candidate
sequence is considered frequent or not, we report these statistics for specific values of σ.
The table depicts the absolute number of matched sequences for each pattern expression,
as well as the share of matched sequences compared to the total number of sequences. For
example, N2(100) matches 1 883 581 sequences of the NYT dataset, which is 3.8% of the
sequences in NYT. Here, we count a sequence as a matched sequence if it produces at least
one frequent candidate sequence. It can happen that a sequence matches the pattern but
produces no frequent candidate sequence.

The table further depicts the total number of produced frequent candidate sequences. It
also reports both the mean and median number of frequent candidate sequences produced
by one matched sequence. For example, N2(100) generates 16 011 402 frequent candidate
sequences, which is 8.5 frequent candidate sequences per matched sequences on average.
The median number of produced candidate sequences for N2(100) is 9.

New York Times corpus. The pattern expressions N1–N5 are aimed at the NYT
dataset. Abbreviations used in the table are DET for determiner such as the, PREP for
preposition such as in or at, ADV for adverb, and ADJ for adjective.

Pattern expressions N1, N2, and N3 are selective pattern expressions: they produce
a manageable amount of candidate sequences. They further match only few of the input
sequences. N1(10) and N2(100) match 3.8% of the sequences in NYT, N3(10) only 0.9%.
N1(10), N2(100), and N3(10) produce on average 1, 8.5, and 2.9 frequent candidate se-
quences per matched input sequence. The total number of frequent candidates sequences
stays manageable for these pattern expressions: below 2 million for N1(10) and N3(10)

and at around 16 million for N2(100).
N1 extracts verb-based relations used between two entities, for example 〈lives in〉. Mul-

tiple nouns and a preposition can be part of the relation, but are optional. Typically, N1

extracts exactly one candidate sequence from a sentence. N2 works similarly to N1, but
captures the surrounding entities as well. It allows for generalization of both these entities,
so it produces more candidate sequences per matched sequence than N1, as can be seen
from the mean number of frequent candidate sequences per matched sequence in Table 4.2.

Pattern expressions N4 and N5 are less selective: they produce many candidate se-
quences. They extract 3-grams, a common concept in language modeling: contiguous
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Table 4.2: Statistics on select pattern expressions: number of input sequences matched,
total number of frequent candidate sequences produced, share of matched sequences com-
pared to the total number of sequences, and the mean and median number of frequent
candidate sequences produced by one matched sequence.

Absolute number of % matched Candidates / matched
Dataset matched s. freq. candidate s. of total s. mean median

N1(10) NYT 1 888 731 1 966 265 3.8 1.0 1
N2(100) NYT 1 883 581 16 011 402 3.8 8.5 9
N3(10) NYT 434 017 1 273 918 0.9 2.9 3
N4(1K) NYT 43 871 765 5 051 558 542 88.5 115.1 99
N5(1K) NYT 48 657 981 6 334 670 196 98.1 130.2 119

A1(500) AMZN-L 1 149 166 5 049 862 729 5.4 4 394.4 30
A2(100) AMZN-L 1 081 873 41 690 987 5.1 38.5 1
A3(100) AMZN-L 125 060 3 216 153 183 0.6 25 716.9 989
A4(100) AMZN-L 54 110 204 949 085 0.3 3 787.6 25

L(10,1,5) AMZN-S 3 029 105 51 972 718 770 45.6 17 157.8 103
L(100,1,5) AMZN-S 3 028 765 30 340 605 519 45.6 10 017.5 60
L(100,1,4) AMZN-S 3 028 765 5 676 618 616 45.6 1 874.2 54
L(100,3,5) AMZN-S 3 028 765 139 828 522 247 45.6 46 166.8 60
L(100,0,5) AMZN-S 3 028 594 6 803 880 901 45.6 2 246.5 55

sequences of three items. Consequently, they match almost every input sequence. Further,
they can produce many candidate sequences from one input sequence.

N4 extracts generalized 3-grams occurring directly before a noun. For σ = 1 000, it
produces an average of 115.1 frequent candidate sequences for 88.5% of the input sequences
in NYT. N5 extracts 3-grams from any position in the sequence, and generalizes one of the
three words in the 3-gram at a time. It does not produce a frequent candidates sequence
only if the input sequence consists of less than three items or if it contains infrequent
items such that no candidate sequence is frequent. Consecutively, the number of frequent
candidate sequences is much higher for N4(1k) and N5(1k): around 5 billion and 6 billion,
respectively.

Amazon reviews. The hierarchy for the AMZN-L dataset is deeper than the one for
NYT. That is, an item on average has more ancestors and therefore can generalize to more
items. As can be seen in Table 4.1, in AMZN-L an item has 4.6 ancestors (including itself)
on average, in NYT it is 2.8.

A1, A3, and A4 are cases that match only few input sequences, but generate many can-
didate sequences from these few input sequences (see Table 4.2). One reason for this is the
deeper hierarchy: a matched item produces more items if it has more ancestors. Another
reason is that — due to the possible gaps between matched items — these pattern expres-
sions can match many combinations of items. For example, in A1, each matched Electronics
item can generalize to its ancestors. Moreover, multiple combinations of Electronics items
can be matched.

A1 and A4 are similar pattern expressions with one difference: Amazon customers
review products of category Music Instrument less often than the ones of the category
Electronics. A1(500) matches 5.4% of the AMZN-L sequences, A4(100) matches 0.4%.
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Table 4.3: Pattern expressions and example frequent sequences. Adapted from Beedkar
and Gemulla (2016a).

Notation Pattern expression Example sequences from NYT (freq.)

N1(σ) Relational phrases between entities lives in (4 322),
ENTITY (VERB+ NOUN+? PREP?) ENTITY is survived by (1 749)

N2(σ) Typed relational phrases ORG is offering ENTITY (2 239),
(ENTITY↑ VERB+ NOUN+? PREP? ENTITY↑) PER was born in LOC (11 581)

N3(σ) Copular relations for an entity PER be professor (1 582),
(ENTITY↑ be↑=) DET? (ADV? ADJ? NOUN) LOC be great place (99)

N4(σ) Generalized 3-grams before a noun NOUN PREP DET (8 163 372),
(.↑){3} NOUN DET ADV ADJ (760 714)

N5(σ) 3-grams, one item generalized human rights NOUN (21 883),
([.↑. .]|[. .↑.]|[. . .↑]) who VERB also (22 223)

Example sequences from AMZN-L

A1(σ) Generalized sequences of (up to 5) electronic ‘Mice’ ‘Keyboards’
items, which are at most 2 items apart in the ‘Computers & Accessories’ (875),
input sequences ‘MP3 Players’
(Electronics↑)[.{0, 2}(Electronics↑)]{1, 4} ‘Headphones’ (11 761)

A2(σ) Sequences of books ‘Storm of Swords’
(Book)[.{0, 2}(Book)]{1, 4} ‘A Feast for Crows’ (153)

A3(σ) Type of products reviewed after a digital camera ‘Lenses’ ‘Tripods’ (158),
DigitalCamera[.{0, 3}(.↑)]{1, 4} ‘Batteries’ ‘SD&SDHC Cards’ (149)

A4(σ) Generalized sequences of musical instruments ‘Musical Instrument’
(MusicInstr↑)[.{0, 2}(MusicInstr↑)]{1, 4} ‘Bags & Cases’ (2 158)

Example sequences from AMZN-S

L(σ, γ, λ) FSM with hierarchy, maximum gap γ, L(10, 1, 5): ‘Pop Music’ ‘Pop Music’
and maximum length λ (as LASH) ‘Pop Music’ ‘Pop Music’ (288 021),
(.↑)

[
.{0, γ}(.↑)

]
{1, λ−} with λ− = λ− 1. ‘Books’ ‘Movies & TV’

‘Toys & Games’ (4 052)

Example sequences from NYT

M(σ, γ, λ) FSM with maximum gap γ and maximum M(100, 1, 5): in what (46 905),
length λ, no hierarchy (as MG-FSM) most of the (115 243), spoke on
(.)

[
.{0, γ}(.)

]
{1, λ−} with λ− = λ− 1. condition anonymity (9 995)

50



A3 is also using generalization, but is different from A1 and A4. It mines any combi-
nation of up to four items reviewed after a digital camera, with up to three other items
between the matched items. This creates an average of 25 716.9 frequent candidate se-
quences per matched input sequence for σ = 100, as can be seen in Table 4.2.

A2 does not make use of generalization and typically produces only few candidate
sequences. It mines books reviewed in sequence. Typically, it produces only one frequent
candidate sequence per input sequence. For users who reviewed many books, it can generate
many candidate sequences per input sequence.

Traditional constraints. We can use the pattern expression language to express
traditional subsequence constraints. These pattern expressions are applicable to all of our
datasets. For example, pattern expression L(σ, γ, λ) presented in Table 4.3 models the
setting of LASH (Beedkar and Gemulla, 2015): a maximum length constraint, a maximum
gap constraint, and support for hierarchies. The brackets [...] in the pattern expression are
used to depict a succession of items, not a set of matching items.

The maximum length constraint λ allows limiting the maximum number of items in
a subsequence. For example, for λ = 4, only subsequences with four items or less are
considered. The maximum gap constraint γ allows to limit the gap between two items in
the subsequence. With γ =∞, all subsequences are considered. For γ = 0, only contiguous
subsequences are considered. In general, for 0 ≤ λ < ∞, subsequences are considered if,
for two consecutive items of the subsequence, only a maximum of λ items lie between
the originating items in the input sequence. For example, for an input sequence 〈abcd〉,
sequence 〈ad〉 is considered as a subsequence for λ ≥ 2 and 〈ac〉 for λ ≥ 1.

Pattern expressions for such traditional constraints produce a vast number of candidate
sequences, as can be seen from Table 4.2. The AMZN-S dataset is smaller than the other
datasets, with only 6 643 666 input sequences in total. However, these unselective pattern
expressions generate many frequent candidate sequences.

Pattern expression M(σ, γ, λ) models the setting of MG-FSM: the same constraints as
L(σ, γ, λ), but without support for hierarchies. One can see that, in the pattern expression,
we do not generalize any items: we use item expression (.) instead of (.↑).

4.2 Performance for declarative subsequence constraints

We now turn to evaluating our algorithm. First, we examine its performance for FSM
with subsequence constraints that cannot be expressed using traditional constraints. As
we know of no other distributed algorithms for this settings, we evaluate our approach
against two baseline algorithms.

4.2.1 Baseline algorithms

We implemented two baseline algorithms: DDCount and DDIS. DDCount, the distributed
version of DESQ-COUNT, is described in Section 3.1. For each input sequence, it produces
all frequent candidate sequences and aggregates them by count. We implement this using
Spark’s reduceByKey function.

DDIS is a variant of DDIN that sends the input sequence to the partitions instead of
candidate sequences, as discussed in Section 3.4.1. As DDIN, it is based on item-based
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partitioning. For each input sequence T , DDIS determines the pivot items P (T, π) and
sends the entire input sequence to the partitions corresponding to the pivot items. At each
partition Pp, we run DESQ-DFS on the input sequences to produce all frequent sequences
with pivot item p.

DDIS is a rather naive approach because there are at least two clear opportunities for
improvement. First, it sends the full input sequences. However, often, only a part of the
input sequence is relevant. Therefore, one could send only the relevant part of the input
sequence. In some cases, it might be possible to just drop irrelevant parts of the input
sequence. In other cases, this might be more involved, and one would need to modify
the FST or rewrite the input sequence. In any case, our naive implementation sends full
input sequences.

Second, as the algorithm sends full input sequences, many non-pivot sequences are
produced at the partitions. We discard these input sequences when they are produced.
However, DESQ-DFS can spend much time in parts of the prefix tree where no pivot
item is produced or will be produced. A more efficient approach would prevent these
sequences in the first place. For LASH, Beedkar and Gemulla (2015) propose a specialized
pivot sequence miner, which improves this behavior in the more general case of traditional
subsequence constraints. Essentially, their pattern-growth approach starts with the pivot
items (instead of the empty prefix at the beginning of the sequence) and grows the pattern
to the left and to the right from there. It might be possible to adapt this approach for
DDIS. We hypothesize that this could improve mining performance significantly.

4.2.2 Results

Run time. Figure 4.1(a) depicts the times the three algorithms took for mining pattern
expressions that cannot be expressed using traditional subsequence constraints: A1 to A4

and N1 to N5. It also gives the minimum support thresholds σ we used for these pattern
expressions, which we adopt from Beedkar and Gemulla (2016a). The run times are shown
using a logarithmic scale.

We first consider selective pattern expressions, such as N1, N2, N3, and A2. These
do not generate many candidate sequences. For these pattern expressions, the run times
of the three algorithms are similar. This is noteworthy, as DDIN and DDIS execute ad-
ditional computation. They determine pivot items and run DESQ-DFS or an adapted
version of DESQ-DFS for local mining, respectively. DESQ-COUNT, on the other hand,
just produces candidate sequences and aggregates them by count. We conclude that this
additional computation does not result in a significant run time overhead for selective
pattern expressions.

We now consider unselective pattern expressions, such as N4, N5, A1, A3, and A4.
These pattern expressions generate many candidate sequences. DDIN consistently outper-
forms the baseline approaches for these pattern expressions. For A1, A3 and A4, respec-
tively, it is 47, 49, and 3.3 times faster than DDCount. For N4, it is 6.7 times faster, for N5

it is 4.5 times faster. As stated in Section 1, building an algorithm that is more efficient
than DDCount for unselective pattern expressions is the goal of this thesis.

We further observe that DDIS outperforms DDCount for some of the unselective pattern
expressions that generate many candidate sequences for one input sequence: DDIS is 3.5
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Figure 4.1: Performance of DDCount, DDIS, and DDIN for subsequence constraints that
cannot be expressed using traditional constraints

times faster than DDCount for A1, 14 times faster for A3, and 1.7 times faster for A4.
For these pattern expressions, it is apparently more efficient to send input sequences, even
though we send the full input sequences.

For N4 and N5, DDIS is significantly slower than DDCount, mostly because the mining
phase takes long. We estimate that this can be improved significantly by developing a local
mining algorithm that is specialized for mining only pivot sequences.

In contrast to DDIS, both DDIN and DDCount run most of the work in the map stage.
We do not report map and mine times separately in Figure 4.1(a), because the separation
could be misleading due to the logarithmic scale. In general, DDCount has short mining
phases, as its mining consists only of aggregating the produced candidate sequences by
count and filtering by the minimum support. DDIN has slightly longer mining phases, as
it needs to find frequent paths through the NFAs. Both these algorithms shift the main
work of simulating the FST to the map phase. In contrast, DDIS often uses most of the
total run time in the mining stage.

Shuffle size. Using a logarithmic scale, Figure 4.1(b) depicts the amount of data
shuffled between the map and the mine stage of our distributed algorithms.
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We observe that encoding candidate sequences as NFAs is effective. In contrast to
DDCount, DDIN can represent candidate sequences much more concisely when the pattern
expression is unselective. For example, for A1, DDCount shuffles 37.04 GB of data, whereas
DDIN shuffles only 0.35 GB. For N4, DDCount and DDIN shuffle 25.8 GB and 0.32 GB,
respectively. For selective pattern expressions, the shuffle sizes of DDIN are smaller or on
par with DDCount. For N1 and N2, the shuffle sizes of DDIN are slightly larger than the
ones of DDCount because the candidate sequences are very short and DDIN additionally
shuffles the pivot item. These results indicate that our techniques to encode simple NFAs
concisely are effective.

Shuffling full input sequences leads to encouraging results for pattern expressions that
make extensive use of generalization. For A1, A3, and A4, sending the full input sequence
to the partitions, as DDIS does, is considerably more concise than sending all generalized
candidate sequences, as DDCount does. For N4 and N5, which allow less generalization,
DDCount is more concise, as it can send only the relevant parts of the sequence and DDIS
sends the full sequence. For these pattern expressions, further work on the approach of
DDIS is necessary.

We can summarize that DDIN performs at least as well as the baseline approaches
for all pattern expressions and clearly outperforms them for unselective ones. Further,
encoding candidate sequences as NFAs is effective.

4.3 Effect of proposed enhancements

We now examine the effect of some of the enhancements we proposed in Chapter 3. In
particular, we assess the effect of minimizing the NFAs and the effect of aggregating the
NFAs by count.

4.3.1 Algorithm variants

For this, we implemented two algorithm variants: DDIN/MA7 and DDIN/A8. DDIN/MA
does not minimize the NFAs before sending them to the partitions and does not aggregate
NFAs by count. When processing an input sequence, for each partition Pp, it builds a tree
as described in Section 3.6.2 and then serializes this tree without merging common suffixes.
DDIN/A minimizes the NFAs as DDIN, but does not aggregate the NFAs by count.

4.3.2 Results

Figure 4.2 depicts both run time and shuffle size of these algorithm variants and DDIN for
a select set of pattern expressions. Both graphs use a logarithmic scale for the y-axis.

For some pattern expressions, minimization and aggregation have only a negligible
effect on both shuffle size and run time: they do not improve performance, but also do
not make it much worse. Such pattern expressions are N1 and A3 or other ones A2, A4,
N2, and N3, which we omitted in the graphs. These pattern expressions are the ones that
already run fast in comparison to the other cases.

7DDIN without Minimization and Aggregation
8DDIN without Aggregation
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Figure 4.2: Performance of DDIN/MA, DDIN/A, and DDIN for select non-traditional and
traditional subsequence constraints

For more involved mining tasks, the enhancements can have a noticeable effect. Merging
the suffixes of the NFAs has an effect for pattern expressions with many shared suffixes.
For A1, minimization reduces run time by 24%, from 51 to 39 seconds. For some cases of
traditional FSM, which we discuss more in the upcoming section, the effect is larger. For
L(100, 1, 6), it leads to a speed-up of 50%, from 16 to 8 minutes.

Aggregation has a significant effect whenever identical NFAs are produced multiple
times. In these cases, aggregation can lead to both lower shuffle and faster mining, as
there are less NFAs to be processed and held in memory. For N4, the effect is most
noticeable: aggregation decreases shuffle size and run time by roughly half, from around
7.8 GB to 3.7 GB and from 224 to 103 seconds, respectively. For N5, the effect on both
shuffle size and run time is a reduction by roughly 30%.

In summary, one can say that the proposed enhancements do not slow down mining in
general and can decrease run times for some pattern expressions.
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Figure 4.3: Performance of LASH and DDIN for various parameter settings of traditional
subsequence constraints using hierarchies

4.4 Performance for traditional constraints

So far, we compared DDIN to baseline approaches for FSM with declarative subsequence
constraints. In this section, we examine how the algorithm performs for traditional con-
straints. In a first step, we evaluate its performance for some traditional constraints with
the support for hierarchies. To do this, we compare it to LASH, a state-of-the-art dis-
tributed FSM algorithm with support for traditional subsequence constraints and hier-
archies (Beedkar and Gemulla, 2015). In a second step, we examine the performance of
DDIN without hierarchies.

4.4.1 Reference algorithm

LASH supports only a subset of the subsequence constraints DDIN offers. It allows to
constrain the maximum gap between two items of a subsequence in the input sequence
and the maximum length of the subsequences. LASH was specifically created and tuned
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for this scenario, with specialized subsequence extraction and specific rewrites of the input
sequences for the shuffle. We built DDIN for the more general case of declarative subse-
quence constraints. Therefore, it cannot take advantage of optimizations specific to this
particular set of constraints.

We replicate an experiment series run by Beedkar and Gemulla (2015), which was run
on the smaller Amazon dataset AMZN-S. We obtained this dataset from the authors. The
dataset is smaller than the AMZN-L dataset we used in our other experiments. Dataset
characteristics can be seen in Table 4.1.

LASH is developed for the MapReduce framework. We obtained the LASH code on-
line9. Beedkar and Gemulla (2015) ran their experiments on a different cluster of 10 worker
nodes and 1 master node, with 8 map and 8 reduce tasks per worker node. Each task was
given 4 GB of main memory, resulting in a maximum of 64 GB used per worker node. We
run LASH on our cluster also with 8 map and 8 reduce tasks per worker node, but only
8 worker nodes. We start each task with 8 GB of main memory. For DDIN, we run 8
executors that each have 8 CPU cores and 64 GB of memory.

In Hadoop MapReduce, reduce tasks can start before all map tasks are finished. During
that time, more than 8 tasks can run in parallel on a worker node. Therefore, more than
8 cores per worker and more than 64 GB of memory can be used per worker. In our
implementation of DDIN in Apache Spark, the mine stage begins once all map tasks have
finished. We decided for the above settings because, in this setting, during the majority of
execution time, LASH uses 8 tasks per worker, which occupy 64 GB of memory and use 8
cores per worker.

4.4.2 Results

With hierarchy. Figure 4.3(a) reports run times for various settings of the parameters
minimum support, maximum gap, and maximum length using a linear scale. The param-
eter settings are adapted from the original experiment series. We include the run times
originally reported by Beedkar and Gemulla (2015), of our runs of LASH, and the ones
of DDIN.

In the figure, we depict time spent in the map stage and time spent in the mine stage
separately. A dotted line in the bars indicates the end of the last map task. For LASH,
we include the shuffle time in the time of the mine stage. Apache Spark does not report
separate times for the shuffle. Shuffle time is included in the other two stages.

The results of our replication mostly confirm the run times reported in the original
experiment. In the replication, we use two workers less and therefore 16 map and 16
reduce tasks less. The work of these tasks is distributed to the other 8 workers, so given
the linear scalability demonstrated in Beedkar and Gemulla (2015), on an identical cluster,
25% longer run times are expected. We work with different hardware for the nodes of
the cluster and different Hadoop and Java versions. Additionally, we took the LASH code
and ran it, without extensive tweaking of settings. In three parameter settings, our runs
deviate unexpectedly. For L(100, 2, 5), the replication runs are slower than expected. For
L(100, 3, 5), our replication runs all failed with a null pointer exception. Moreover, for

9https://github.com/uma-pi1/lash
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L(100, 1, 7), the replication runs are faster than the original run times, despite the fact we
use less map and reduce tasks.

Even though we test on cases that LASH is optimized for, our experiments show that
DDIN offers run times that are competitive to LASH. It is faster than the LASH replication
runs for eight parameter settings and slower for two.

Before we discuss this in more detail, we briefly consider shuffle size. Figure 4.3(b) de-
picts the shuffle sizes for both our LASH runs and DDIN using a logarithmic scale. Shuffle
size is consistently higher for DDIN. As discussed previously, traditional subsequence con-
straints generate a large number of candidate sequences. In contrast to DDIN, LASH
shuffles input sequences, so it can encode these candidate sequences efficiently. DDIN re-
quires between 1.7 and 5.9 times more bytes to shuffle candidate sequences than LASH
requires to shuffle input sequences.

DDIN is particularly fast when the number of candidate sequences is small, and can-
didate sequences are short. For settings L(100, 0, 5), L(100, 1, 3), and L(100, 1, 4), DDIN
outperforms LASH noticeably. One can see in Figure 4.3(b) that for these cases, encoding
candidate sequences as NFAs leads to shuffle sizes close to the ones of LASH. These pa-
rameter settings allow either no gaps between items or only short sequences. Both reduces
the number of candidate sequences. For these cases, respectively, DDIN sends only 1.7,
1.7, and 2.6 times more bytes.

The opposite effect can be observed when the number of candidate sequences is large.
L(100, 3, 5) allows gaps of 3 items. This gap constraint allows many matches on the input
sequence. Each match creates an accepting path in the FST, which DDIN adds to an NFA.
Consequently, DDIN requires a long time to construct the NFAs. L(100, 1, 7) allows long
subsequences, which also causes many possible matches and many candidate sequences,
which also results in long NFA construction times.

One would expect DDIS to perform well for these cases, as its general architecture
is similar to LASH: it also sends input sequences to the partitions and then mines them
locally. In our experiments, local mining took long with DDIS, presumably because we
have no pivot-specific mining algorithm. LASH makes use of such a pivot-optimized local
mining algorithm.

DDCount also performs poorly due to the large number of candidate sequences. For
most cases, when running with 64 GB of memory per executor, the jobs fail because
they run out of memory to store the candidate sequences. For cases with fewer candidate
sequences, as L(10k, 1, 5), L(100, 0, 5), L(100, 1, 3), and L(100, 1, 4), DDCount finishes, but
is slower than DDIN by factors 18, 40, 7, and 40, respectively.

Without hierarchy. We further run DDIN on two datasets without considering
hierarchies. We run it on the NYT dataset and discard the NYT hierarchy by using the
pattern expressions M(σ, γ, λ), which does not make use of the hierarchy. We further run
it on CW50.

The run times for NYT are depicted in Figure 4.4(b). The experiments are inspired by
an experiment run by Beedkar and Gemulla (2015, Figure 4(e)), where LASH is compared
to MG-FSM for mining without hierarchies. Unfortunately, we were not able to obtain the
NYT dataset used in these experiments. Our NYT dataset was preprocessed differently
such that it contains many more distinct items. Unfortunately, in the time available, we
were unable to get LASH to run on our NYT dataset. For both 8 GB and 16 GB of memory
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Figure 4.4: Performance of DDIN for various parameter settings of traditional constraints
without considering hierarchies

for all types of MapReduce tasks, LASH consistently ran out of memory when reading the
f-list for the dataset.

The run times in the figure show that the run time of DDIN increases as we increase
the maximum length constraint λ from 5 to 10: from 13 minutes for M(10, 1, 5) to 8.9
hours for M(10, 1, 10). As the number of candidate sequences increases exponentially in
the length of the input sequence, this produces exponentially more candidate sequences.
DDIN adds all these candidate sequences to the NFAs, which is inefficient in this case.
The original experiment indicates that LASH is more robust in handling this increase of λ
(Beedkar and Gemulla, 2015, Figure 4(e)).

We further ran DDIN on the larger CW50 dataset. We divided CW50 into 2 048 input
splits instead of 256, such that the number of input sequences per split is similar to the same
number for NYT with 256 input splits. The run times reported in Figure 4.4(b) indicate
that DDIN is able to mine larger datasets efficiently. The first three pattern expressions
M(1k, 0, 5), M(1k, 0, 5), and M(100, 0, 50) mine n-grams from the ClueWeb sentences and
are inspired by an experiment of Beedkar et al. (2015, Figure 4(b)). Unfortunately, we
were able to obtain only a 50% sample of the ClueWeb dataset used in that experiment.
Additionally, our count of distinct items in the CW50 dataset does not match what we
would expect from a 50% sample of the dataset used in the original MG-FSM experiment.
Beedkar et al. report that their dataset contains 7 361 754 distinct items. The dataset we
were able to obtain contains 22 642 566 distinct items. As we were unable to clear up the
cause of this difference, we are hesitant to directly compare the results.

An increase in the maximum length for n-grams does lead to an increase in run time,
but it is not as drastic as seen for maximum gap γ = 1 on the NYT dataset. Constrain-
ing the mining to consecutive subsequences lowers the number of candidate sequences.
Again, the original experiment shows that MG-FSM is more robust at handling the in-
crease than DDIN.

We can summarize that despite the fact that DDIN is developed for a more general
case, it offers run times that are competitive to a state-of-the-art distributed algorithm for
FSM with traditional subsequence constraints when hierarchies are used. The fewer candi-
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Figure 4.5: Scalability of DDIN for pattern expression N5.

date sequences the traditional constraints allow, the better DDIN performs in comparison.
DDIN can mine large datasets, but does not handle an exponential increase in candidate
sequences well.

4.5 Scalability

In this section, we examine the scalability of the proposed algorithm DDIN. First, we in-
vestigate performance as we vary dataset size. We then look at strong and weak scalability.
In a second step, we examine the speed-up we can achieve with our distributed algorithm
compared to sequential mining.

4.5.1 Data subsets

We test the scalability of DDIN by varying dataset size, the number of executors, and both
at the same time. To vary dataset size, we created random subsamples of the NYT dataset
with 25%, 50%, and 75% of the original sequences.

When running a pattern expression on two different sizes of a dataset, one has two op-
tions for setting the minimum support threshold σ. One can either adapt σ proportionally
to the dataset size. This leads to a shuffle size that is roughly proportional to the smaller
dataset size, but results in roughly the same number of frequent sequences. Alternatively,
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Table 4.4: Sequential and distributed run times for select pattern expressions

Run time (minutes)
Dataset DESQ-DFS (1 core) DDIN (65 cores) Speed-up

N4(1k) NYT 99.37 1.71 58×
N5(1k) NYT 67.46 4.43 15×
L(10,1,5) AMZN-S 96.07 4.33 22×
L(10k,1,5) AMZN-S 7.60 0.96 8×
L(100,3,5) AMZN-S 157.59 19.66 8×
M(1k,0,5) CW50 n/a (out of memory) 23.37 n/a
M(1k,1,5) CW50 n/a (out of memory) 117.28 n/a

one can leave σ at the value for the full dataset. That leads to a shuffle size that is much
smaller than proportional, but to a proportional number of frequent sequences. For our
experiments, we opted for the first choice: we set σ proportional to the dataset size. Fig-
ure 4.5(d) shows that setting σ proportional to the size of the dataset leads to proportional
shuffle sizes for N5 with minimum support σ set to 250, 500, and 750 for the 25%, 50%,
and 75% samples, respectively. As before, we set σ = 1000 for the full dataset.

4.5.2 Results

We tested scalability for a couple of pattern expressions and all presented linear scalability.
Figure 4.5 depicts the results for N5. In the figure, we report time taken by the map and
mine stage separately. The time spent in the map stage is indicated at the top of the bars
by a lighter shading.

We first examine the performance of DDIN as we vary dataset size. For this, we let
it run on 25%, 50%, 75%, and 100% of the data with 8 executors. Results are shown in
Figure 4.5(a). We observe that DDIN handles this well with both mine and map time
increasing almost linearly as we increase dataset size. There is a constant factor at the
start of each job, as there is some time required to set up the executors and especially
to send the dictionary to each executor and read it into memory, which takes around 16
seconds for the NYT dataset.

We evaluate strong scalability by running DDIN on the full NYT dataset with 2, 4, and
8 executors. In Figure 4.5(b), one can see that DDIN demonstrates good strong scalability
with both map and mine times decreasing linearly as we double the number of executors.

We evaluate weak scalability by increasing the number of executors as we increase the
size of the dataset. Results are depicted in Figure 4.5(c). The results show that DDIN
exhibits good weak scalability.

4.5.3 Speed-up compared to sequential mining

To examine how our distributed algorithm compares against sequential execution, we ob-
tained the latest code revision from the authors of DESQ-DFS and ran it for a group of
pattern expressions. We ran the sequential experiments on one machine of our cluster.
For the experiments, we disconnected this machine from the cluster. We ran DESQ-DFS
with 124 GB of maximum Java heap memory. We limited the number of threads garbage
collection can use in parallel to 4.
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As a comparison, we ran DDIN with our standard settings, that is 8 executors with
8 CPU cores and 64 GB of memory each. In total, with one core used by the driver process,
we ran DDIN on 65 CPU cores in parallel.

In our experiments, DDIN was between 8 and 58 times faster than the sequential
DESQ-DFS. Table 4.4 shows the run times for the sequential and distributed algorithm.
For N4, DDIN was 58 times faster than DESQ-DFS. We estimate that this is mainly due
to the large number of NFAs that can be aggregated for N4, as discussed previously. For
the LASH pattern expressions, speed-up is lower, presumably because many candidate
sequences have to be added to NFAs and the NFAs have to be shuffled.

Distributed execution makes it possible to mine larger datasets. For both CW50 cases
depicted in Table 4.4, sequential execution consistently failed with out of memory excep-
tions in our experiments with 124 GB of maximum heap space. The experiments also failed
when we increased the maximum heap space to 204 GB, making use of the swap space of
the machines.

In summary, DDIN exhibits linear scalability. Distributed execution can make min-
ing possible for datasets that cannot be mined efficiently sequentially and can speed up
execution compared to sequential algorithms.
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Chapter 5

Conclusions

5.1 Summary

We proposed the distributed algorithm DDIN for FSM with declarative subsequence con-
straints. The algorithm divides up the computation using item-based partitioning. For
each input sequence, it produces candidate sequences and sends these to the corresponding
partitions. The candidate sequences are encoded as one NFA for each partition. To reduce
the size of the NFA, we use information about the structure of these candidate sequences
and include shared parts of candidate sequences only once.

Our experiments show that DDIN is faster than baseline algorithms for distributed FSM
with declarative subsequence constraints by a factor of up to 50 for pattern expressions
that produce many candidate sequences. It is not slower than baseline algorithms for cases
that produce few candidate sequences.

Our experiments further show that DDIN can be competitive to LASH, a state-of-
the-art distributed algorithm for FSM with traditional subsequence constraints. For some
parameter settings, DDIN outperforms LASH. We further found that DDIN scales lin-
early and makes it possible to mine large datasets that cannot be mined efficiently using
sequential algorithms.

5.2 Limitations and future work

DDIN can be inefficient for pattern expressions that produce a vast number of candidate
sequences. We hypothesize that for these cases, it can be more efficient to send input
sequences to the partitions and run the FST again to generate the candidate sequences.
This has the disadvantage that one has to run the FST twice, but has the advantage that
it does not generate and shuffle all frequent candidate sequences. We implemented a naive
version of this approach in our baseline algorithm DDIS. Rewrites similar to the work in
MG-FSM and LASH could reduce the size of the shuffle by sending only the relevant parts
of the input sequence. A local mining algorithm specialized for mining pivot sequences
could improve mining time.

The pattern expression language we use in this work has limitations. Although we can
express many of the traditional constraints and entirely new ones, there exist constraints
that cannot be expressed using this language. For example, the language offers no support
for aggregate constraints, which operate on multiple items of a subsequence (Pei et al.,
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2002). Beedkar (2016) extends the pattern expression language with more fine-grained
controls over which items are matched and which items are produced by an item expression.
Further work could integrate more types of constraints into the language or make it more
convenient to express some constraints, which can be specified with custom hierarchies at
the moment.

In this thesis, we focus on the special case where sequences consist of single items.
Other literature often studies sequences that consist of itemsets, which is relevant for many
applications. Extending DDIN to support sequences of itemsets would make it practical
for these applications.
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Appendix A

Finding pivot items of a path by
merging sets

We aim to find the pivots P (R) of a given path R by merging the sets of output items of
the path using the following merge rule:

U ⊕Q = {ω ∈ U | ω ≥ min(Q)} ∪ {ω ∈ Q | ω ≥ min(U)}

The update rule is associative and commutative. We omit a proof here. To obtain the set
of pivot items of a path R, one merges the sets of output items of the path like this:

P (R) = O1 ⊕O2 ⊕ ...⊕On.

We do not give a proof for the correctness of this method here. To get an intuition how
the method works, we apply the method to an example, path R1:

R1 : {c} — {a1, A} — {a1, A} — {b2, B} — {e}.

Let us start with a part of the path, which we call R′1: {b2, B} — {e}. This path generates
sequences 〈b2e〉 and 〈Be〉. From our total ordering of the items, we have B < e < b2.
Therefore, the pivots of the candidate sequences are p(〈b2e〉) = b2 and p(〈Be〉) = e. So the
set of pivots for this path is P (R′1) = {b2, e}.

Using the update rule, the minimal items of U = {b2, B} and Q = {e}, are min(U) = B

and min(Q) = e. Further, {ω ∈ U | ω ≥ e} = {b2} and {ω ∈ Q | ω ≥ B} = {e}. Therefore,
{b2, B} ⊕ {e} = {b2, e}.

For path R1, we have

P (R1) = {c} ⊕ {a1, A} ⊕ {a1, A} ⊕ {b2, B} ⊕ {e} = {c}.

This is easy to see, as min({c}) = c and for all other items ω in the path ω < c.
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