Scalable Frequent Sequence Mining With Flexible Subsequence Constraints

Alexander Renz Wieland ¹ Matthias Bertsch ² Rainer Gemulla ²

¹Technische Universität Berlin

²Universität Mannheim

ICDE 2019, Macau, China April 11th, 2019

Frequent Sequence Mining (FSM)

Fundamental task in data mining

- Data modeled as sequences of items or events
- Often items are arranged in a hierarchy
- Goal is to discover frequent subsequences

Example (market-basket data)

- Sequence = purchases of customer over time
- Item = product + product hierarchy
- Example subsequence = DSLR Camera \rightarrow Tripod \rightarrow Flash

Challenge: Flexibility

Unconstrained FSM outputs a multitude of frequent subsequences

a bell (302392), become president (234311), **graduated from (3962)**, why so many of us (234), of the (220125), going to (12897), had never used (23202), PER be professor (1582), large enough to be (12083), who VERB also (22 223), **lives in (4322)**, great artist (2394),

Typically, only few of them are interesting to a specific application
– E.g., only relational phrases between entities are of interest

. . .

Flexible methods (that can be tailored to applications) are essential

Goal: flexible and scalable FSM

- Common approach: flexible subsequence constraints
- Problem: existing FSM algorithms are flexible or scalable

► Our paper: flexible and scalable

Outline

- 1. Frequent Sequence Mining
- 2. Flexibility
- 3. Scalability
- 4. Conclusion

Flexible FSM with DESQ

- ▶ We adopt the unified FSM framework DESQ [ICDM '16, TODS '19]
 - Applications can describe flexible subsequences constraints in an intuitive, declarative way
 - Alleviates need for customized mining algorithms
- Provides pattern expression language to specify subsequence constraints
 - Syntax like regular expressions
 - Supports captures groups and hierarchies

Example pattern expressions for applications

- Noun modified by adjective or noun big country (110), research scientist (473)

([ADJ|NOUN] NOUN)

Relational phrase between entities ENTITY (VERB⁺ NOUN⁺? PREP?) ENTITY is being advised by (15), has coached (10)

Products bought after a digital camera Camera Lenses, Tripods & Monopods (11), Camera Batteries, SD & SDHC Cards (12)

DigitalCamera[. $\{0,3\}(.^{\uparrow})$] $\{1,4\}$

4 Amino acid sequences that match $[S \mid T]$. $[R \mid T]$ ([S | T]).*(.).*([R | T])SLR(103,093), TAK(102941)

Example pattern expressions for traditional constraints

1	3-grams	()
2	3-, 4-, and 5-grams	(.){3,5}
3	skip 3-grams with gap 1	(.) . (.) . (.)
4	All subsequences	$[.*(.)]^+$
5	length 3–5 subsequences	[.*(.)]{3,5}
6	bounded gap of 0–3	(.)[.{0,3}(.)]+
7	serial episodes of length 3, window 5	(.)[.?.?(.) .?(.).? (.).?.?](.)
8	generalized 5-grams	$(.^{\uparrow})\{5\}$
9	subsequences matching regex $[a b]c^*d$	$(a b)[.*(c)]^*.*(d)$
10		

Outline

- 1. Frequent Sequence Mining
- 2. Flexibility

3. Scalability

- 3.1 General framework
- 3.2 Communicate inputs
- 3.3 Communicate candidates
- 3.4 Experimental study

4. Conclusion

A general framework for distributed FSM

▶ Bulk synchronous parallel with 1 round of communication

Item-based partitioning [SIGMOD '00, PPoPP '07, SIGMOD '13]

Input sequence Candidate subsequences $a \subseteq d \subseteq b, a \subseteq db, a \subseteq b,$ relevant for partition c $a d \subseteq b, a \subseteq b$ $a d \subseteq b, a \subseteq b$ a d b, a brelevant for partition a

(not relevant for partitions b, d)

Key challenges

- How to distribute computation
- What to communicate

Communicate inputs

> Send each input sequence to all partitions to which it can contribute

- Often sufficient to send parts of the input sequence
- Example: if e's not relevant for mining task, don't send them

Communicate candidates

Send each candidate subsequence to its corresponding partition

Important optimization: compress candidates

Experimental study: key results

► Up to 50x faster than naïve approaches, up to 100x less communication

- Sending candidates is up to 5x faster for selective constraints
- ▶ 1-4x generalization overhead over specialized, less general approaches
- Both approaches scale nearly linearly with number of input sequences

Outline

- 1. Frequent Sequence Mining
- 2. Flexibility
- 3. Scalability
- 4. Conclusion

Conclusion

- ► Existing algorithms: flexible or scalable. Ours: both
- Adopt DESQ: a framework to tailor FSM to applications
- Distributed mining via item-based partitioning
 - Communicate inputs
 - 2 Communicate candidates
- Available as open source Apache Spark library, link at https://github.com/rgemulla/desq/tree/distributed
- G. Buehrer et al. Toward terabyte pattern mining: An architecture-conscious solution. PPoPP '07.
- K. Beedkar and R. Gemulla. DESQ: Frequent sequence mining with subsequence constraints. ICDM '16.
- K. Beedkar, R. Gemulla, and W. Martens. A unified framework for frequent sequence mining with subsequence constraints. *To appear in Transactions on Database Systems*, 2019.
- J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD '00.
- I. Miliaraki et al. Mind the gap: Large-scale frequent sequence mining. SIGMOD '13.